Turbulent Stirring and Mixing

Neither “stirring” nor “mixing” appears in
the 1961 Proceedings.

Only L.S.G. Kovasznay is on record as having mentioned the word
‘'scalar’: “Measurements of scalar fluctuations, i.e., temperature, would
present the simplest case (of dispersion)”.

There was a closely related session on
“Diffusion and Lagrangian effects”

President: S. Corrsin
Secretaries: J.L. Lumley and P.G. Saffman

Speakers: J.L. Lumley, S. Corrsin, P.G. Saffman
and J.O. Hinze




Titles of talks

-J.L. Lumley: The mathematical nature of the problem of
relating Lagrangian and Eulerian statistical functions in
turbulence

*S. Corrsin: Theories of turbulent dispersion

‘P.G. Saffman: Some aspects of the effects of the molecular
diffusivity in turbulent dispersion

-J.0. Hinze: Dispersion in turbulent shear flow

Themes

-Single particle diffusion: Long-time and medium-time
behaviors

-Two-particle dispersion: Applying the Kolmogorov
phenomenology, deriving Richardson's law, etc

-Shear dispersion Yeung & Sawford

Heavily based on G.I. Taylor (1921, 1954)




Obukhov Corrsm Batchelor

Schumacher & KRS (2010)

Prasad & KRS, Phys. Fluids A 2, 792 (1990)
P. Constantin, I. Procaccia & KRS, Phys. Rev. Lett. 67,1739 (1991)




Additives as passive scalars

If the velocity of advection u(x;t) solves NS = 0 without any
dependence on the additive, the additive is called
Passive Scalar, which obeys the

Advection diffusion equation
00/0t + u.vVo = kV20

0(x;t), the additive; k, its diffusivity (usually small); u(x;t), the
advection velocity; no source terms here

The equation is linear with respect to 6.
BCs (perhaps mixed) are almost always linear as well.

Linearity holds for each realization but the equation is
statistically nonlinear because of <u.V6>, etc.

Bos et al.




Langevin equation
dX = u[X(t);t] dt + (2)"2 dy(t), X(t=0) = X,

%(t) = vectorial Brownian motion, statistically independent in three components
For smooth velocity fields, single-particle diffusion as well as
two-particle dispersion are well understood.

The turbulent velocity field is analytic a quantity such as a
only in the range r <, and Holder structure function (log)

continuous, or “rough,” in the scaling
range (Au ~ ", h <1). scaling range
r=0(n)

h = 1/3 for Kolmogorov turbulence
<Au*>~r but has a distribution in analytic range

practice. “multiscaling”

log r
C. Meneveau & KRS, J. Fluid Mech. 224, 429 (1991); KRS, Annu. Rev. Fluid Mech. 23, 539 (1991)

If Au~rhfor h <1, we get r(t) ~ t"(""N) and Lagrangian paths separate
explosively and are not unique; this introduces various complexities.




Model studies

1 Assume some artificial velocity field satisfying divu =0
_ see A.J. Majda & P.R. Kramer, Phys. Rep. 314, 239 (1999)

Broad-brush summary of “large-scale, long-time” results

1. For smooth velocity fields (e.g., periodic and deterministic),
homogenization is possible. That is,

<u(x;t) Vo> = (k- V(B(x;t))
where k;is an effective diffusivity (Varadhan, Papanicolaou, Majda,

and others)

Velocity is a homogeneous random field, but a scale separation
exists: L /L, <<1. Homogenization is possible here as well.

Velocity is a homogeneous random field but delta correlated in time,
L /Ly = O(1); eddy diffusivity can be computed.

For the special case of shearing velocity (with and without
transverse drift), the problem can be solved essentially completely:
eddy diffusivity, anomalous diffusion, etc., can be calculated without
any scale separation.

See, e.g., G. Glimm, B. Lundquist, F. Pereira, R. Peierls, Math. Appl. Comp. 11,
187 §1992§; M. Avellaneda & A.J. Majda, Phil. Trans. Roy. Soc. Lond. A 346,
205 (1994); G. Ben Arous & H. Owhadi, Comp. Math. Phys. 237, 281 (2002)




Kraichnan model

(with focus on small-scales

R.H. Kraichnan, Phys. Fluids
11, 945 (1968); Phys. Rev. Lett
72,1016 (1994)

Review: G. Falkovich, K.

Gawedzki & M. Vergassola,
Rev. Mod. Phys. 73, 913 (2001)

Surrogate Gaussian velocity field

<u(x;tu(y:t')> = [x-y[*7 d(t-t)
v =2/3 recovers Richardson’s diffusion

Forcing for stationarity:
<f(x;Dfy(yit)> = C(r/L) 8(t-t)
C(r/L) is non-zero only on the large

scale, decays rapidly to zero for
smaller scale.
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Turbulence nears a final answer

From Uriel Frisch at the Observatoire de la
Cote d'Azur, Nice, France

The great Italian scientist Leonardo da
Vinci was the first person to use the word
“turbulence” (or turbolenza) to describe the
complex motion of water or air. By carefully
examining the turbulent wakes created be-
hind obstacles placed in the path of a fluid,
he found that there are threc
to turbulent flow. Turbulence is firs
ated near an obstacle. Long-lived “eddic
beautiful whirls of fluid - are then formed
Finally, the turbulence rapidly decays away
once it has spread far beyond the obstacle

However, it was not until the early 19th
century that Claude Navier was able to
write the basic equations governing how the
velocity of a turbulent fluid evolves with
time. Navier realized that the earlier equa-
tions of Leonhard Euler for ideal flow had
to be supplemented by a diffusion term that
took into account the viscosity of the fluid

A few decades later, Adhemar de Saint-
Venant noticed that turbulent flow — for

example in a wide channel — has a much

£ invariance is actually broken and that fully

developed turbulence is “intermittent”. In

2 other words, the exponents have anomalous

8 { dissipated ina cascade of er

ca
pollutant, advected by a turbulent flow of the type
found in the atmosphere or oceans, simulated

lly on a 2048 x 2048 grid. The scalar
displays strong “intermittency” and has anomalous
scaling properties that cannot be predicted by
simple dimensional analysis. Low concentrations
are dark, high ones are light

stand what is known as fully deve
turbulence (FDT) in the case of a h

nolds number — a non-dimensional par:

values that cannot be predicted by dimen-
sional analysis — they are instead universal,
being independent of how the turbulence is
produced. The intermittency also means
that the small-scale turbulent activity I
potty”, and the dissipation of energ
fractal properties — in other words energy is
transfers to

S smaller and smaller scales. Roberto Benzi

Benoit Mandelbrot, Steven Orsza
Tabeling and many others have bee
volved in the development of such work

For many years, only models that were
rather loosely connected with the traditional
equations of fluid dynamics were availabl
to describe this intermittency. Early models
were developed by Kolmogorov and col-
leagues in the 1960s, while in the 1980s the
concept of “multifractal” was introduced by
Giorgio Parisi and the author

A few years ago Robert Kraichnan pre-
dicted that intermittency and anomalous
scaling are already present in a much simp-

zero modes, shape geometry,
statistical conservation laws, etc.

Modelli

came — and remains to this day — a major

7 turbulent transport thus be-

challenge. The first attempt goes back to
a student of Saint-Venant called Joseph

(Xu et al.?)

the same scale invariance as the equations
themselves, but in a statistical sense. For
example, the average of the velocity differ-
ence across a certain distance raised to a cer-

predicted by naive dimensional analysis arise
through the presence of non-trivial elements
actually functions of several variables) i the
“null space” of the operators governing

For a nurnber of outstanding and
unanswered issues, see:
KRS & J. Schurnacher, Phil. Trans. Roy.
Soc. Lond. A 368, 1561 (2010)

and I can do no more than pont to the cru-
cial contributions of Lord Kelvin, Oshorne
Reynolds, Geoffrey Ingram Taylor, Jean
Leray, Theodor von Kiarman and many
others. I will thus turn to one of the major
challenges in the field, which is to under-

Puysics WorLD Decemsen 1999

scaling exponents with good accuracy have
also been developed, as have advanced
numerical simulations, the importance of
which was first perceived by the mathemati-
cian John von Neumann

I'he evidence is that the assumed scale

understood n a few years” time. But many
more years may be needed to truly under-
stand all of the complexity of turbulent flow

aproblem that has been challenging physi-
cists, mathematicians and engineers for at
least half a millennium




<AU%> ~ 15
Standard “theory” gets the T, by assuming that the structure functions
obey the same symmetries as the equations. Two questions arise:

1. In <A U4> ~ 1%

the same argument yields ¢, = 2C, (in general, C,,, = ng,)

E.g., flatness = <A.u*> / <A .u?>2 = constant.

Measurements have shown that the flathess — «asr — 0
[i.e., T, < 2C, (or generally T, < nG,)]

The exponent of any given order order has to be determined on its own
merit.
“Anomalous exponents”

2. In the inertial range, we have <A u3> = -4/5 <e>r
Breaking of symmetry. Are there are other statistical conservation laws
whose symmetry breaking provides the basis for determining the
exponents of higher orders.




A measure of anomalous scaling,

2C, — ¢4, versus the index v, for the
Kraichnan model. The circles are
obtained from Lagrangian Monte
Carlo simulations (from U. Frisch’s
group). The results are compared with
analytic perturbation theories (blue,
green) and an ansatz due to
Kraichnan (red).

Gotoh & Watanabe
Mixing process itself imprints features independent of the velocity field!




The passive scalar spectrum
What we know

(and what we don't)
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Georgia Tech.

Diego Donzis
Texas A&M

Jorg Schumacher Massive parallelism, up to O(10°) CPU cores, so doing simulations
has become a big task in itself.
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#® Inertial-convective:
E4(k) ~ (x)(e)"/3k5/2
(for1/L < k < 1/noc)

# Yeung ef al. PoF 2005:

» (jk)(j ~ 0.67 1n 3D
spectrum, consistent with
survey of experiments

(Sreenivasan PoF 1996)

» “bottleneck” apparent for
Sc =1 (or precursor to
k! for Sc > 1)

‘SC < 1: Obukhov-Corrsin scalingl

Compensated spectra

167!

Ry ~ 650, 20483
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Consistent with 1sotropic random

forcing of scalars (Watanabe &
Gotoh 2004, 2007; A, e)

PK. Yeung; NCAR, July 2011 — p.14/32
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The viscous convective region

Sc increasing

Danaila et al.
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compensated
spectrum

Reynolds number: Re >>1
Schmidt number, Sc = v/k >>1

In support of the -1 power law
Gibson & Schwarz, JFM 16, 365 (1963)

KRS & Prasad, Physica D 38, 322 (1989)
Expressing doubts

Miller & Dimotakis, JFM 308, 129 (1996)
Williams et al. Phys. Fluids 9, 2061 (1997)

Simulations in support
Holzer & Siggia, Phys. Fluids 6, 1820 (1994)

Batchelor (1956)

Eq(k) = Cg x(v/e)"?k"exp[-q(kng)]
Kraichnan (1968)

Eq(k) = Cg k(v/e) "2k~ [1+(6q)"2kng X
exp(-(6q)"*kng)]




Schmidt number

Donzis, KRS & P.K. Yeung, Flow, Turbulence and Combustion 85, 549 (2010)




\DNS results for Sc < 1I
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Supports k~17/3 spectrum Transfer flux is weak

# Higher Re simulations planned, possibly yet-lower Schmidt nos.

PK. Yeung; NCAR, July 2011 — p.17/32




The Yaglom relation (1949)
<Au (A 0)*>

G. Stolovitzky, P. Kailasnath & KRS, JFM
297, 275 (1995)
» Refined similarity hypothesis

L. Danaila, F. Anselmet, T. Zhou & R.A.

Antonia, JFM 391, 359 (1999)

» Extension to non-stationary forcing
conditions

P. Orlandi & R.A. Antonia, JFM 451, 99
(2002): DNS

L. Midlarsky, JFM 475, 173 (2003):
Experiment

« Conditions of Reynolds and Peclet
numbers under which the Yagolm
equation holds




Some large scale features




Decaying fields of turbulence and scalar

* L, is set by the mesh size

* L, can be set independently and L/
L, can be varied

« Diffusivity of the scalar (i.e., Pror
Sc = v/k) is a variable.

<f?> ~t "M (variable m)

m — m, = f(Re; Sc; L, /Ly)?

m,: asymptotic m for large

values of the arguments {U/M




i Data: Warhaft & Lumley; KRS et al.

(both from wind tunnels, heated grid)

Initial L /L,

Non-uniqueness of the exponent is not difficult to understand
qualitatively but difficult to make a theory for.

Durbin, Phys. Fluids 25, 1328 (1982)




Effect of length-scale ratio: PDF of 0 in stationary turbulence

Both PDFs are for stationary velocity
and scalar fields, under comparable
Reynolds and Schmidt numbers.

Passive scalars in homogeneous flows
most often have Gaussian tails, but long
tails are observed for column-integrated
tracer distributions in horizontally
homogeneous atmospheres.

Models of Bourlioux & Majda, Phys. Fluids
14, 881 (2002), closely connected with
models studied by Avellaneda & Majda

Probability density function of the passive scalar
Top: Ferchichi & Tavoularis (2002)
Bottom: Warhaft (2000)




Direct Numerical Simulations
(P.K. Yeung, D. Donzis, KRS)

8 <R, <650
1/512 < Sc <1024
Different forcing schemes

e ﬁ'ii{’g:_@ - I*—Q _;_ L
FalE 8 @ =

0 e

Peclet number, Pe (=R,2Sc)

Experiment

Homogeneous shear flows

Boundary layers
Jets
WELGE]

Dimensional Theory

Flux spectrum
E (k) = C,,G<e>13k773

in the inertial convection range
(Lumely 1964)

Using <u@> = - E (k) dk (with
appropriate limits),

we get

1/Sc,= (10/3) Cy, (1 = 1/Pe)

Doering & Thiffeault
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Anisotropy of small scales (with R.A. Antonia)

Sgn S =-sgn (dU/dy) X sgn (dT/dy)
KRS & Tavoularis, JFM (1980)
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Some consequences of fluctuations

0. Traditional definitions
<n> = (v3/<e>)14, <Ng> = <n>/Sc'?, <t4>= <nB>2/K

1. Local scales
n = (v/e)", or define n through nd u/v =1

2. Distribution of length scales

Schumacher, Yakhot

log, [Q(W/n )]

05 1
log ()

log,o (M/<n>)

probability density of n/<n>



3. The velocity field is analytic only in the range
r <m (and the scalar field only for r < ny)

4. Minimum length scale n,, = <n> Re "4
(Schumacher, KRS and Yakhot 2007)

5. Average diffusion time scale
<t,>= <np?>/K, Not <t >= <ng>2/k

6. From the distribution of length scales, we have
<t>= <Np2>lK = 10 <ng>2/k

/. Eddy diffusive time/molecular diffusive time =
Re'2/100;exceeds unity only for Re = 104

( mixing transition advocated by Dimotakis, short-
circuit in cascades of Villermaux, etc)




Other mixing problems

1 Passive mixing under differential diffusion
1 J.R. Saylor & KRS, Phys. Fluids 10, 1135 (1998)

1 Mixing of fluids of different densities, where
the mixing has a large influence on the
velocity field (e.g., thermal convection,
Rayleigh-Taylor instability, radiation effects)

1 Those accompanied by changes In
composition, density, enthalpy, pressure,
etc. (e.g., combustion, detonation,

supernova)
1N. Peters (later in this session)




Whither universality of
small-scale scalar?




Active scalars

d;@ = u.Va + kAa +F,

ui(x;t) = J dy Ki(x,y) a(y,t)

Simple case: Boussinesq
approximation




The mean wind

2000

4000 6000

t, sec

8000 10000

large-
scale
circulation
(“mean
wind”)

the container

Segment of 120 hr record

Niemela, KRS, Donnelly (2002)



How are the reversals distributed?

T

n+1

_.7;

T, = time between subsequent switches in the velocity signal T =

ower-law scaling of the probabilit .
i g i 4 for large t,. (MR CIAY)

density function for small T4 400
Tipy = S

i 1 1 1 " 1 " 1 " OO
0 500 1000 1500 2000 2500 3000

T4 [sec]

KRS, Bershadskii & Niemela, Phys. Rev. E 65, 056306 (2002)

-1 power law scaling characteristic of SOC systems
(see papers in Europhys. Lett., Physica A and PRE)



Dynamical model

Balance between buoyancy
and friction, forced by
stochastic noise

For certain combinations of
parameters, one obtains
power-law for small times
and exponential distribution
for large times.

double-well potential

p(r): exp[-(z;/7,)]

KRS, Bershadskii & Niemela, Phys. Rev. E 65, 056306 (2002)




Summary of major points
* \We have a fair number of definitive results about

some model problems and know with empirical
certainty about the real thing; much of the “classical

phenomenology appears to hold.
* The classical predictions of the past have been
confirmed (e.g., those relating to the -1 power).

b

 The nature of anomalous scaling has been understood
for the Kraichnan model, and may be true more
generally.

» But there are gaps in our phenomenological
understanding and questions remain. They can be
posed sharply but have no sharp answers.

* Why is the spectral constant for the Batchelor range

twice as large as he determined?
« What is the true effect of length scale ratio?




 Large scale features of the scalar depend
on initial conditions quite severely, and each
property has to be understood on its own
merit. Models have been very helpful for
understanding some essentials.

 Small scale scalar does not appear to be

universal (more strikingly so than the velocity)
* Active scalars are illustrated through
convection, where considerable progress is
being made.




Thank you
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Upperbound results in the limit of Ra — «

1. Arbitrary Prandtl number
« Nu < aRa'?for all Pr (Constantin);

« a=0.02634, according to Plasting & Kerswell, JFM
477, 363 (2003)

* Rules out, for example, Pr'2 and Pr1/4.

2. Large but finite Prandtl numbers
« For Pr>cRa, Nu<Ra'"3(In Ra)¥3 (Wang)
« For higher Rayleigh numbers, the 2 power holds.

3. Infinite Prandtl number

« Nu=BRa'? Howard, Malkus, mostly dimensional
arguments, independent of the Prandtl number

 Nu < CRa'3(In Ra)'3 (Doering et al., exact)

« Nu < aRa'3 (lerley, Kerswell & Plasting, JFM 560, 159
(2006)---“almost exact”)

2 questions: Pr, 1/3 (2 views)
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