Turbulent Stirring and Mixing

Neither "stirring" nor "mixing" appears in the 1961 Proceedings.

Only L.S.G. Kovasznay is on record as having mentioned the word 'scalar': "Measurements of scalar fluctuations, i.e., temperature, would present the simplest case (of dispersion)".

There was a closely related session on "Diffusion and Lagrangian effects"

President: S. Corrsin
Secretaries: J.L. Lumley and P.G. Saffman
Speakers: J.L. Lumley, S. Corrsin, P.G. Saffman and J.O. Hinze

Titles of talks

-J.L. Lumley: The mathematical nature of the problem of relating Lagrangian and Eulerian statistical functions in turbulence
-S. Corrsin: Theories of turbulent dispersion
-P.G. Saffman: Some aspects of the effects of the molecular diffusivity in turbulent dispersion
-J.O. Hinze: Dispersion in turbulent shear flow

Themes

-Single particle diffusion: Long-time and medium-time behaviors
-Two-particle dispersion: Applying the Kolmogorov phenomenology, deriving Richardson's law, etc
-Shear dispersion Yeung \& Sawford

Prasad \& KRS, Phys. Fluids A 2, 792 (1990)
P. Constantin, I. Procaccia \& KRS, Phys. Rev. Lett. 67,1739 (1991)

Additives as passive scalars

If the velocity of advection $\mathbf{u}(\mathbf{x} ; \mathrm{t})$ solves $\mathrm{NS}=0$ without any dependence on the additive, the additive is called

Passive Scalar, which obeys the
Advection diffusion equation

$$
\partial \theta / \partial t+\mathbf{u} \cdot \nabla \theta=k \nabla^{2} \theta
$$

$\theta(\mathbf{x} ; \mathrm{t})$, the additive; κ, its diffusivity (usually small); $\mathbf{u}(\mathbf{x}, \mathrm{t})$, the advection velocity; no source terms here

The equation is linear with respect to θ.
BCs (perhaps mixed) are almost always linear as well.
Linearity holds for each realization but the equation is statistically nonlinear because of $\langle\mathbf{u} . \nabla \theta>$, etc.

Bos et al.

Langevin equation

$$
d \mathbf{X}=\mathbf{u}[\mathbf{X}(\mathrm{t}) ; \mathrm{t}] \mathrm{dt}+(2 \kappa)^{1 / 2} \mathrm{~d} \chi(\mathrm{t}), \mathbf{X}(\mathrm{t}=0)=\mathbf{x}_{0}
$$

$\chi(\mathrm{t})=$ vectorial Brownian motion, statistically independent in three components For smooth velocity fields, single-particle diffusion as well as two-particle dispersion are well understood.

The turbulent velocity field is analytic only in the range $r<\eta$, and Hölder continuous, or "rough," in the scaling range ($\Delta_{r} u \sim r^{h}, h<1$).
$h=1 / 3$ for Kolmogorov turbulence $<\Delta_{r} u^{3}>\sim r$ but has a distribution in practice. "multiscaling"
a quantity such as a structure function (log)

$\log r$
C. Meneveau \& KRS, J. Fluid Mech. 224, 429 (1991); KRS, Annu. Rev. Fluid Mech. 23, 539 (1991)

If $\Delta_{r} u \sim r^{h}$ for $h<1$, we get $r(t) \sim t^{1 /(1-h)}$, and Lagrangian paths separate explosively and are not unique; this introduces various complexities.

Model studies

$\square \quad$ Assume some artificial velocity field satisfying div u = 0
\square see A.J. Majda \& P.R. Kramer, Phys. Rep. 314, 239 (1999)
Broad-brush summary of "large-scale, long-time" results

1. For smooth velocity fields (e.g., periodic and deterministic), homogenization is possible. That is,
$<u(\mathbf{x}, \mathrm{t}) \nabla \theta>=\quad\left(\mathrm{K}_{\mathrm{T}} \cdot \nabla(\theta(\mathbf{x}, \mathrm{t}))\right.$
where κ_{T} is an effective diffusivity (Varadhan, Papanicolaou, Majda, and others)
2. Velocity is a homogeneous random field, but a scale separation exists: $L_{U} / L_{\theta} \ll 1$. Homogenization is possible here as well.
3. Velocity is a homogeneous random field but delta correlated in time, $L_{u} / L_{\theta}=O(1) ;$ eddy diffusivity can be computed.
4. For the special case of shearing velocity (with and without transverse drift), the problem can be solved essentially completely: eddy diffusivity, anomalous diffusion, etc., can be calculated without any scale separation.
See, e.g., G. Glimm, B. Lundquist, F. Pereira, R. Peierls, Math. Appl. Comp. 11, 187 (1992); M. Avellaneda \& A.J. Majda, Phil. Trans. Roy. Soc. Lond. A 346, 205 (1994); G. Ben Arous \& H. Owhadi, Comp. Math. Phys. 237, 281 (2002)

Kraichnan model

(with focus on small-scales)
R.H. Kraichnan, Phys. Fluids 11, 945 (1968); Phys. Rev. Lett 72, 1016 (1994)

Review: G. Falkovich, K. Gawedzki \& M. Vergassola, Rev. Mod. Phys. 73, 913 (2001)

zero modes, shape geometry, statistical conservation laws, etc.
(Xu et al.?)

For a number of outstanding and unanswered issues, see:
KRS \& J. Schumacher, Phil. Trans. Roy.
Soc. Lond. A 368, 1561 (2010)
ana I can ao no more tuan pont to the cru- scalng exponents wth good accuracy have understood im a tew years tume. But many
cial contributions of Lord Kelvin, Osborne also been developed, as have advanced more years may be needed to truly under Reyolds, Geoffrey Ingram Taylor, Jean numerical simulations, the importance of stand all of the complexity of turbulent flow
Leray, Theodor von Karmán and many which was first perceivedby the mathemati- -a problem that hasbench challe

$$
<\Delta_{r} u^{2}>\sim r \zeta_{2}
$$

Standard "theory" gets the ζ_{2} by assuming that the structure functions obey the same symmetries as the equations. Two questions arise:

$$
\text { 1. } \ln \left\langle\Delta_{r} u^{4}\right\rangle \sim r^{5}{ }_{4}
$$

the same argument yields $\zeta_{4}=2 \zeta_{-2}$ (in general, $\zeta_{2 n}=n \zeta_{2}$)

$$
\text { E.g., flatness }=\left\langle\Delta_{t} u^{4}\right\rangle /\left\langle\Delta_{t} u^{2}\right\rangle^{2}=\text { constant. }
$$

Measurements have shown that the flatness $\rightarrow \infty$ as $r \rightarrow 0$

$$
\text { [i.e., } \left.\left.\zeta_{4}<2 \zeta_{2} \text { (or generally } \zeta_{2 n}<n \zeta_{2}\right)\right]
$$

The exponent of any given order order has to be determined on its own merit.
"Anomalous exponents"
2. In the inertial range, we have $<\Delta_{t} u^{3}>=-4 / 5<\varepsilon>r$

Breaking of symmetry. Are there are other statistical conservation laws whose symmetry breaking provides the basis for determining the exponents of higher orders.

$2 \zeta_{2}-\zeta_{4}$

A measure of anomalous scaling, $2 \zeta_{2}-\zeta_{4}$, versus the index γ, for the Kraichnan model. The circles are obtained from Lagrangian Monte Carlo simulations (from U. Frisch's group). The results are compared with analytic perturbation theories (blue, green) and an ansatz due to Kraichnan (red).

The passive scalar spectrum What we know
(and what we don't)
$\log E_{\theta}(k)$

Diego Donzis Texas A\&M

\mathbf{R}_{λ}

Jörg Schumacher
TU IImenau

Massive parallelism, up to $\mathrm{O}\left(10^{5}\right)$ CPU cores, so doing simulations has become a big task in itself.

Sc $\lesssim 1:$ Obukhov-Corrsin scaling

Compensated spectra

- Inertial-convective:

$$
E_{\phi}(k) \sim\langle\chi\rangle\langle\epsilon\rangle^{-1 / 3} k^{-5 / 3}
$$

(for $1 / L \ll k \ll 1 / \eta_{O C}$)

- Yeung et al. PoF 2005:
- $C_{O C} \approx 0.67$ in 3D spectrum, consistent with survey of experiments (Sreenivasan PoF 1996)
- "bottleneck" apparent for $S c=1$ (or precursor to k^{-1} for $S c>1$)

Consistent with isotropic random forcing of scalars (Watanabe \& Gotoh 2004, 2007; ©, •)

For large Sc, computational domain size scales as $\mathrm{Re}^{3} \mathrm{Sc}^{2}$.

The viscous convective region

Reynolds number: $R e \gg 1$
Schmidt number, Sc $=v / k \gg 1$
In support of the -1 power law
Gibson \& Schwarz, JFM 16, 365 (1963)
KRS \& Prasad, Physica D 38, 322 (1989)

Expressing doubts

Miller \& Dimotakis, JFM 308, 129 (1996)
Williams et al. Phys. Fluids 9, 2061 (1997)

Simulations in support

Holzer \& Siggia, Phys. Fluids 6, 1820 (1994)
Batchelor (1956)
$E_{\theta}(k)=C_{B} \kappa(v / \varepsilon)^{1 / 2} k^{-1} \exp \left[-q\left(k \eta_{B}\right)^{2}\right]$
Kraichnan (1968)
$E_{\theta}(k)=C_{B} K(v / \varepsilon)^{1 / 2} k^{-1}\left[1+(6 q)^{1 / 2} k \eta_{B} x\right.$
$\left.\exp \left(-(6 q)^{1 / 2} \mathrm{k} \eta_{\mathrm{B}}\right)\right]$

Donzis, KRS \& P.K. Yeung, Flow, Turbulence and Combustion 85, 549 (2010)

DNS results for $\mathrm{Sc} \ll 1$

- Higher $R e$ simulations planned, possibly yet-lower Schmidt nos.

The Yaglom relation (1949)

$<\Delta_{\mathrm{r}} \mathrm{u}\left(\Delta_{\mathrm{r}} \theta\right)^{2}>=-(2 / 3)<\chi>r$

G. Stolovitzky, P. Kailasnath \& KRS, JFM 297, 275 (1995)

- Refined similarity hypothesis
L. Danaila, F. Anselmet, T. Zhou \& R.A. Antonia, JFM 391, 359 (1999)
- Extension to non-stationary forcing conditions
P. Orlandi \& R.A. Antonia, JFM 451, 99 (2002): DNS
L. Midlarsky, JFM 475, 173 (2003): Experiment
- Conditions of Reynolds and Peclet numbers under which the Yagolm equation holds

Some large scale features

$\square \square \square \square \square \square \square \square \square \square$ $\square \square \square \square \square \square \square \square \square$. , 等 \#\#

- L_{u} is set by the mesh size
- L_{θ} can be set independently and L_{u} / L_{θ} can be varied
- Diffusivity of the scalar (i.e., Pr or Sc $=v / k$) is a variable.
$<\theta^{2}>\sim t^{-m}$ (variable m)
$m-m_{0}=f\left(\right.$ Re; Sc; $\left.L_{u} / L_{\theta}\right) ?$
m_{0} : asymptotic m for large values of the arguments

Non-uniqueness of the exponent is not difficult to understand qualitatively but difficult to make a theory for.

Durbin, Phys. Fluids 25, 1328 (1982)

Effect of length-scale ratio: PDF of θ in stationary turbulence

Both PDFs are for stationary velocity and scalar fields, under comparable Reynolds and Schmidt numbers.

Passive scalars in homogeneous flows most often have Gaussian tails, but long tails are observed for column-integrated tracer distributions in horizontally homogeneous atmospheres.

Models of Bourlioux \& Majda, Phys. Fluids 14, 881 (2002), closely connected with models studied by Avellaneda \& Majda

Probability density function of the passive scalar Top: Ferchichi \& Tavoularis (2002) Bottom: Warhaft (2000)

Direct Numerical Simulations
(P.K. Yeung, D. Donzis, KRS)

$$
\begin{gathered}
8<R_{\lambda}<650 \\
1 / 512<\operatorname{Sc}<1024
\end{gathered}
$$

Different forcing schemes

Experiment

Homogeneous shear flows Boundary layers Jets
Wakes

Dimensional Theory

Flux spectrum

$$
E_{u \varphi}(k)=C_{u \varphi} G<\varepsilon>^{1 / 3} k^{-7 / 3}
$$

in the inertial convection range (Lumely 1964)

Using <u $>=-\int E_{u \varphi}(k) d k$ (with appropriate limits),
we get
$1 / \mathrm{Sc}_{\mathrm{t}}=(10 / 3) \mathrm{C}_{\mathrm{u} \mathrm{\varphi}}(1-1 / \mathrm{Pe})$

Doering \& Thiffeault

Anisotropy of small scales (with R.A. Antonia)

Some consequences of fluctuations

0. Traditional definitions

$\left\langle\eta>=\left(\nu^{3} /\langle\varepsilon>)^{1 / 4},\left\langle\eta_{B}\right\rangle=\langle\eta\rangle /\right.\right.$ Sc $^{1 / 2},\left\langle\tau_{d}\right\rangle=\left\langle\eta_{B}\right\rangle^{2 / \kappa}$

1. Local scales
$\eta=\left(v^{3} / \varepsilon\right)^{1 / 4}$, or define η through $\eta \delta_{\eta} u / v=1$
$\eta_{\mathrm{B}}=\eta / \mathrm{Sc}^{1 / 2,}, \tau_{\mathrm{d}}=\eta_{\mathrm{B}}{ }^{2 / \mathrm{K}}$
2. Distribution of length scales

3. The velocity field is analytic only in the range $r<\eta$ (and the scalar field only for $r<\eta_{B}$)
4. Minimum length scale $\eta_{\text {min }}=\left\langle\eta>\operatorname{Re}^{-1 / 4}\right.$
(Schumacher, KRS and Yakhot 2007)
5. Average diffusion time scale
$\left\langle\tau_{d}\right\rangle=\left\langle\eta_{B}^{2}\right\rangle / k$, not $\left\langle\tau_{d}\right\rangle=\left\langle\eta_{B}\right\rangle^{2} / k$
6. From the distribution of length scales, we have $\left\langle\tau_{d}\right\rangle=\left\langle\eta_{B}{ }^{2}>/ \kappa \approx 10<\eta_{B}\right\rangle^{2 / k}$
7. Eddy diffusive time/molecular diffusive time \approx $\operatorname{Re}^{1 / 2 / 100 ; e x c e e d s ~ u n i t y ~ o n l y ~ f o r ~} \operatorname{Re} \approx 10^{4}$ (mixing transition advocated by Dimotakis, shortcircuit in cascades of Villermaux, etc)

Other mixing problems

\square Passive mixing under differential diffusion \square J.R. Saylor \& KRS, Phys. Fluids 10, 1135 (1998)

- Mixing of fluids of different densities, where the mixing has a large influence on the velocity field (e.g., thermal convection, Rayleigh-Taylor instability, radiation effects)
\square Those accompanied by changes in composition, density, enthalpy, pressure, etc. (e.g., combustion, detonation, supernova)
\square N. Peters (later in this session)

Whither universality of small-scale scalar?

Active scalars

$\partial_{\mathrm{t}} \mathrm{a}=\mathbf{u} \cdot \nabla \mathrm{a}+\kappa \Delta \mathrm{a}+\mathrm{F}_{\mathrm{a}}$
$u_{i}(\mathbf{x} ; \mathrm{t})=\int \mathrm{d} \mathbf{y} \mathrm{K}_{\mathrm{i}}(\mathbf{x}, \mathbf{y}) \mathrm{a}(\mathbf{y}, \mathrm{t})$
Simple case: Boussinesq approximation

NS $=-\beta \mathrm{ga}$

The mean wind

The "mean wind" breaks

symmetry, with its own consequences

Segment of 120 hr record

Niemela, KRS, Donnelly (2002)

How are the reversals distributed?
$\tau_{1}=$ time between subsequent switches in the velocity signal power-law scaling of the probability density function for small τ_{1}

$$
\tau_{1} \equiv T_{n+1}-T_{n}
$$

$\tau_{\mathrm{m}}=400 \mathrm{~s}$

KRS, Bershadskii \& Niemela, Phys. Rev. E 65, 056306 (2002)
-1 power law scaling characteristic of SOC systems (see papers in Europhys. Lett., Physica A and PRE)

Dynamical model

Balance between buoyancy and friction, forced by stochastic noise

For certain combinations of parameters, one obtains power-law for small times and exponential distribution for large times.
double-well potential
$p\left(\tau_{1}\right): \exp \left[-\left(\tau_{1} / \tau_{m}\right)\right]$
KRS, Bershadskii \& Niemela, Phys. Rev. E 65, 056306 (2002)

Summary of major points

- We have a fair number of definitive results about some model problems and know with empirical certainty about the real thing; much of the "classical" phenomenology appears to hold.
- The classical predictions of the past have been confirmed (e.g., those relating to the -1 power).
- The nature of anomalous scaling has been understood for the Kraichnan model, and may be true more generally.
- But there are gaps in our phenomenological understanding and questions remain. They can be posed sharply but have no sharp answers.
- Why is the spectral constant for the Batchelor range twice as large as he determined?
- What is the true effect of length scale ratio?
- Large scale features of the scalar depend on initial conditions quite severely, and each property has to be understood on its own merit. Models have been very helpful for understanding some essentials.
- Small scale scalar does not appear to be universal (more strikingly so than the velocity)
- Active scalars are illustrated through convection, where considerable progress is being made.

Thank you

Upperbound results in the limit of $\mathbf{R a} \rightarrow \infty$

1. Arbitrary Prandtl number

- $\mathrm{Nu}<\mathrm{aRa}^{1 / 2}$ for all Pr (Constantin);
- $a=0.02634$, according to Plasting \& Kerswell, JFM 477, 363 (2003)
- Rules out, for example, $\mathrm{Pr}^{1 / 2}$ and $\mathrm{Pr}^{-1 / 4}$.

2. Large but finite Prandtl numbers

- For Pr > c Ra, Nu < Ra ${ }^{1 / 3}(\operatorname{ln~Ra})^{2 / 3}$ (Wang)
- For higher Rayleigh numbers, the $1 / 2$ power holds.

3. Infinite Prandtl number

- $\mathrm{Nu}=\mathrm{BRa}^{1 / 3}$ Howard, Malkus, mostly dimensional arguments, independent of the Prandtl number
- $\mathrm{Nu}<\mathrm{CRa}^{1 / 3}(\mathrm{In} \mathrm{Ra})^{1 / 3}$ (Doering et al., exact)
- $\mathrm{Nu}<\mathrm{aRa}^{1 / 3}$ (lerley, Kerswell \& Plasting, JFM 560, 159 (2006)---"almost exact")

