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A brief overview is provided as an introduction to hydrodyanamic-like turbulence that characterizes the dy-

namics of plasmas in several parameter regimes. This includes magnetohydrodynamics (MHD), the electron

fluid plasma, which is closely related to two dimensional hydrodynamics, and the solar wind, which is usually

viewed as a laboratory for three dimensional MHD, with more involved plasma physics at the dissipative scales.

An emphasis is places on energy decay, spectra, relaxation processes, coherent structures and higher statistics

with selected applications in solar wind, and laboratory plasmas.

I. INTRODUCTION

The scope of turbulence theory has broadened remarkably

in the recent era. Technological advances have broadened the
study of turbulence to a variety of systems while also mo-

tivating and enabling various applications. This breadth of-

fers a great challenge in responding to the charge “to assess

the achievements of the last 50 years of turbulence research
and to identify future challenges that still remain” given to

this Colloquium. The challenge is daunting even in the rela-

tively limited context of the present review. Here some top-

ics are reviewed in magnetohydrodynamic (MHD) turbulence,
and its close relatives in plasma physics, such as Guiding

Center Fluid or two-fluid (Hall) MHD. Experimental tech-

niques, computing technology, remote sensing methods and

in situ spacecraft observations have allowed ideas of MHD
turbulence theory to deeply penetrate space physics, solar

physics, astrophysics, cosmology laboratory plasma and fu-

sion physics, geophysics and planetology, and numerous ma-

terials science and engineering applications. Recognizing the
futility of engaging all of these subjects here, this review will

focus on some advances that relate these new subjects to clas-

sical turbulence ideas, while touching on associated applica-
tions, mainly in the solar wind, the corona, and laboratory

electron plasmas. In the conclusions section a brief and in-

complete attempt will be made to point towards some impor-

tant subjects that are entirely neglected here.

II. MODELS AND PHYSICAL QUANTITIES OF

INTEREST

A plasma, described here as an electrically conducting gas

or fluid, evolves in response to both mechanical and electro-

magnetic forces. To describe its dynamics in a simple way,

one can begin with the momentum equation for hydrodynam-
ics, and add a Lorentz force on the fluid elements. This de-

pends on the low frequency magnetic field and the electric

current density. The magnetic field can then be advanced in

time through Faraday’s law, with a closure based on Ohm’s

law. For simplicity, as in hydrodynamic turbulence, the focus
is often on the constant density incompressible model, which

provides an adequate context for the issues of MHD turbu-

lence that are of primary concern here (see [15]). Ignoring

compressible effects necessarily discards at the onset impor-
tant and detailed features of the plasmas that MHD is intended

to approximate. Nevertheless this is a quick way to arrive at

the study of the nonlinear scale-to-scale couplings that are at
the core of the turbulence problem. The problem of compress-

ible plasma turbulence is much larger and is entirely outside

the current scope apart from a few remarks below and in the

conclusions.
The incompressible MHD model, in terms of the fluid ve-

locity u and the magnetic field B, involves the momentum

equation

∂u

∂t
+ u · ∇u = −1

ρ
∇p+

1

4πρ
(∇× B) × B + ν∇2u (1)

and the magnetic induction equation

∂B

∂t
= ∇× (u ×B) + µ∇2B. (2)

The plasma density ρ, the kinematic viscosity ν , and the
magnetic diffusivity µ, are assumed to be uniform constants.

Therefore both the velocity and magnetic field are solenoidal,

∇ · u = ∇ · B = 0. The pressure p, as in incompressible

hydro, provides a constraint that maintains incompressibility,
and is determined by taking the divergence of Eq. (1). The

dimensionless Reynolds number R = uL/ν (where u is a

typical velocity and L a typical length scale) and magnetic

Reynolds number Rm = uL/µ are measures of the relative
strength of the non-linear terms and linear (dissipative) terms

in the dynamical equations. Highly turbulent MHD occurs at

high values of R and Rm.

We recall that MHD is frequently applied to space and as-
trophysical plasmas for which the derivation of the model is

not so clear as one would like. This contrasts the more firm

conceptual basis hydrodynamics or gas dynamics, which rests
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either on macroscopic or perturbative (such as Chapman En-

skog expansion) approaches given in standard texts on sta-

tistical mechanics. For plasmas with low collisionality, the

basic structure of MHD emerges from conservation of mass,
momentum and energy, along with the Maxwell-Ampere and

Faraday laws, upon ignoring displacement current and adopt-

ing a suitable form of Ohm’s law. However, in some appli-

cations there may not be a clear path to closing the system
with a single isotropic pressure field, or a convincing calcu-

lation of viscosity, resistivity and other transport coefficients

such as thermal conductivity. The study of the origin of dis-

sipation in space and astrophysical plasmas leads to problems
of great importance and difficulty, as does the investigation

of the physics of the pressure tensor. Many topics relating to

the kinetic physics of the solar wind have been studied exten-

sively (see e.g., Marsch (2006) [77].) Equally difficult and
important problems arise in connection with boundary condi-

tions that might need to be imposed, as the number and type

of imposed conditions will differ in plasma and fluid models.

A customary approach in numerical work is to employ

scalar dissipation coefficients, with values based on numer-
ical limitations of spatial resolution rather than on physical

realism. For turbulent MHD this is justified in part by assum-

ing that the nonlinear cascade is mainly from large to small

scales, and the kinetic dissipation mechanisms act to absorb
whatever energy arrives at small scales through spectral trans-

fer. This is only partially satisfactory, and a more compre-

hensive theoretical understanding of the nature of dissipation

in low collisionality MHD applications is desirable, though it
may be neither simple in nature nor of universal form. On the

optimistic side, when observations are available, e.g., for the

solar wind [26], one sees a broad inertial range that separates

energy-containing and dissipation ranges [68]. One can infer
an effective Reynolds number for the solar wind in this way.

Ignoring the difference between viscous and resistive dissi-

pation, one might employ the hydrodynamic estimate of the

dissipation wavenumber kd = (ε/ν3)1/4. Using the Taylor-
von Karman estimate of the decay rate ε = u3/λ, this can be

cast in the form kdλ = R3/4, or R = (kdλ)
4/3 where R is

the Reynolds number. The quantity kdλ is approximately the
bandwidth of the inertial range. Therefore for a three to four

decades inertial range (e.g., the solar wind, approximately),

one has R ≈ 105 (see e.g., [152]. For the lower solar corona,

a five to six decades inertial range is estimated, so R ≈ 108.
For such high Reynolds numbers, the MHD approximation

becomes progressively better at the larger scales.

The energy is a quantity that focuses much attention in hy-

dro and in MHD, because the nonlinear couplings in the fluid

equations do not change its value, and therefore it is mean-

ingful to speak of a “cascade” that exchanges energy among
scales without changing the total amount present. In the high

Reynolds number cascade there are many couplings that drive

larger scale structures, and many that drive smaller scale struc-

tures. When there is a source of energy at large scales, and ei-
ther dissipation (or for some other reason a deficit) of energy

at small scales, then the latter class is dominant, sometimes

by only a modest margin. This effect leads to a net transfer

of energy from large to small scales. We will say more about

this later. For now we call attention to a feature of MHD that

distinguishes it from simple hydrodynamics– namely the po-

tential presence of more than one cascade. This is caused by

the fact that there is more one quadratic quantity that is pre-
served by MHD nonlinear couplings.

For homogeneous (periodic) incompressible MHD with

zero mean magnetic field, there are three (known) ideal

quadratic invariants: energy, E = 〈|v|2 + |b|2〉, cross helicity
Hc = 〈v · b〉, and magnetic helicity 〈b · a〉. Here b = ∇× a

and a is the magnetic vector potential. There is a lot more that

can be said about the role of these additional invariants, and

more will follow in sections below, but for now we note that
the presence of as many as three conserved quadratic fluxes

in an “inertial range” restricts the dynamics in important ways

and gives rise to interesting effects such as inverse cascade,

enhancement of nonlocal couplings and special properties of
solutions such as 1/f noise. (In hydrodynamics there are two

invariants – energy and kinetic helicity - but the latter is often

viewed as of less importance than the additional ideal invari-

ants of MHD. See [62].
The magnetic field may contain a uniform part B0 (be-

low, the “DC magnetic field”) or a smoothly varying part

(which we identify as a local mean magnetic field) plus small
scale fluctuations b, that is B = B0 + b. The large scale

magnetic field supports propagation of hydromagnetic waves;

here, for the incompressible case, we call these Alfvén waves

[5, 6, 93, 111]. These waves are fluctuations transverse to the
mean magnetic field, propagating along the mean magnetic

field direction at the Alfvén speed VA = B0/
√

4πρ.

Even the simplest MHD case, assuming incompressibility,

isotropy, stationarity and homogeneity, is more complex than
hydrodynamics. There are two distinct fields to deal with,

the magnetic and velocity field, and additional complexity

due to Alfvén wave propagation effects. There are at least

two classes of timescales involved, the nonlinear time and the
Alfvén crossing time. Moreover, the large scale magnetic field

introduces a preferred direction and anisotropic effects on the

fluctuations are present.

Here we arrive at a major difference between fluid and
MHD turbulence. Unlike fluid turbulence, the nonlocal ef-

fect of large scales upon the small scales, described above as

“sweeping,” is an important issue for MHD turbulence. Be-
ginning with the work of Iroshnikov (1964) and Kraichnan

(1965) [57, 63], it has been argued that such effects play a sig-

nificant role in MHD turbulence, even in the case of absent DC

magnetic fields. If there is a strong, large-scale magnetic field,
the small-scale fluctuations are subject to a sweeping-like ef-

fect due to Alfvén wave propagation. To discuss this it is use-

ful to write MHD in a more symmetric form, in terms of the

so-called Elsässer fields (Elsässer 1956), z+ = u + b/
√

4πρ
and z− = u − b/

√
4πρ

∂z±
∂t

∓ VA · ∇z± = −z∓ · ∇z± − 1

ρ
∇P + µ∇2z±, (3)

where we have explicitly separated a term involving the large

scale magnetic field (written here in terms of the Alfvén veloc-

ity VA). For simplicity, we assumed ν = µ. The total pres-

sureP = p+B2/8π acts to enforce the constraints∇·z± = 0.
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Either z+ = 0 or z− = 0 provides exact solutions of the

ideal MHD equations. The nonzero field is often said to cor-

respond to wave packets that propagate along the mean field

direction. This description can be misleading because the
“packets” may not be localized, and also may not propagate.

Non-propagating fluctuations with wavevectors strictly per-

pendicular to the mean magnetic field have zero phase speed.

In any case, one sees from the MHD equations that both type
of fluctuations z± are needed for the nonlinear terms to be

non-zero and sustain turbulence [38, 63].

Kraichnan (1965) noted that the mean magnetic field

sweeps the small scale structures which interact and during
that time non-linear transfer of energy between length scales

occurs (in the Kraichnan picture the “wave packets” suffer

brief “collisions” during which energy transfer occurs). One

can see then that the mean magnetic field induces an inhibition
of the nonlinear energy cascade (Chen and Kraichnan, 1997)

[32].

For high Reynolds number MHD turbulent flows in astro-

physical and space environments, there is scale separation to
distinct physical processes at large and small scales. Specifi-

cally, one divides the dynamics into a small scale part that con-

tains “small-small” and “large-small” couplings, and a large-

scale part (see [1, 159], reminiscent of k-epsilon and other hy-
drodynamic turbulence modeling approaches [73]. This type

of “turbulence transport theory” generalizes WKB theory for

MHD and plasma waves [6, 52], and has proven useful in
mapping turbulence amplitudes across large distances within

the corona and heliosphere [20, 158]. Adaptations of trans-

port theory can apparently help explain both the origin of the

solar wind [34, 149] and the highly nonadiabatic profile of
temperature throughout the interplanetary medium [21, 35].

Due to space and time limitations, we will not review trans-

port theory further below, but concentrate on theories of ho-

mogeneous and/or local processes in MHD turbulence and its
relatives.

III. ENERGY DECAY

A central result of turbulence theory is the similarity decay

of energy (per unit mass) for the free decay problem [58]. For

moderate to high Reynolds numbers the rate of decay of en-

ergy become independent of the viscosity, and governed by
the action of the large scale eddies. The basic physical con-

tent of this simplest turbulence phenomenology is captured in

the equations for decay of energy per unit mass U2 and the

similarity length scale L, namely

dU2

dt
= −αU

3

L
;

dL

dt
= βL. (4)

During similarity decay of isotropic turbulence the correlation
functions are stretched and recalled according to

R(r) = U2(t)R̂(r/L(t)) (5)

For MHD the analogous development proceeds by forming

the two point correlation functions of the Elsässer fluctuations,

and examining the conditions for a similarity solution [151].

For globally isotropic MHD turbulence (lacking an imposed

DC magnetic field), the consistency conditions for a similarity

solution, in terms of Elsässer energies Z2
+ and Z2

− and associ-
ated length scales L+ and L−, are

dZ2
+

dt
= −α+

Z2
+Z−

L+

;
dZ2

−

dt = −α−
Z+Z2

−

L−

(6)

dL+

dt
= β+Z−;

dL−

dt = β−L+ (7)

where α±, β± are constants. Note that these equations re-

quire two distinct length scales L+ 6= L− whenever the cross

helicity is non zero and Z+ 6= Z−.
When a DC magnetic field is present and the fluctuations

are assumed to be axisymmetric about this direction, one al-

lows in principle at least four characteristic lengths L parallel
‖ and perpendicular ⊥ for both + and − fluctuations. One

finds that additional restriction need to be imposed to find a

similarity solution. One solution is that the parallel and per-

pendicular length scales remain in constant proportion to one

another for all relevant time scales, that is L
‖
+/L

⊥
+ = q+, and

L
‖
−/L

⊥
− = q−, for constants q±.

These requirements for similarity decay hint at nonuni-

versal properties of MHD turbulence because ratios such as

L+/L− and q± can apparently take on any value. This leads
in principle to many types of MHD turbulence. More discus-

sion on this will appear below. Note that even if there is not

a universal decay law, there still may be interesting families

of similarity decay. It’s just that having more than one cas-
caded quantity complicates the picture. Similarity decay in

3D MHD has been examined in simulations [15, 55], but usu-

ally employing only one length scale. The impact of multiple

dimensionless parameters, and multiple cascades, complicates
MHD and can cause us to question whether “universality” re-

mains a useful concept (see [151]), but this remains an open

and hotly discussed issue.

FIG. 1: Vorticity images showing evolution of Penning trap data.

(Rodgers et al., PRL, 2010)

On the narrower question of existence of similarity decay

laws, it is interesting to note that an analogous situation oc-

curs in 2D hydrodynamics, where energy E = 〈u2〉 and en-
strophy Ω = 〈|∇×u|2〉 are both inviscid quadratic invariants,

and both a direct and inverse cascade are possible [65]. This

leads to interest self organized behavior in the long time limit

of decay, which will be discussed further below in Section VI
. Here show some evidence that this type of system can en-

gage in a similarity decay of the direct cascaded quantity – in

this case enstrophy Ω. The system in question is a Penning

trap containing a pure nonneutral electron plasma, operating
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in a parameter range in which the cyclotron frequency is much

large than the plasma frequency. In this regime the equation

of motion for the coarse grained number density of electrons

is identical to the vorticity equation in 2D hydrodynamics.
Meanwhile, since the E × B drift velocity is divergenceless,

and the electric potential due to the electron charges obeys

a Poisson equation, there is an almost complete analogy be-

tween the fluid scale electron motions in the Trap, and the
equations for a 2D incompressible fluid in a circular container.

See [39].

To a reasonable degree of approximation, the electron den-

sityn(r, θ, t) follows 2D, z-averaged, E×B drift motion [39],
where

vD = −c∇φ× ẑ

B
, ∇2φ = −4π|e|n, (8)

where φ is the electrostatic potential and E = −∇φ. For

this system, vD is equivalent to the 2D fluid velocity v, with

the vorticity ω proportional to electron number density n, and

stream function ψ proportional to −φ the potential. Because
of this analogy, the evolution of the system is governed by the

2D NS equation for one-sign vorticity,

∂ω

∂t
+ (v · ∇)ω = ν∇2ω, (9)

where v = ∇ψ × ẑ and ∇2ψ = −ω. The term involving vis-

cosity ν is familiar in hydrodynamics but not well motivated
in the guiding center plasma case, as the dissipation mecha-

nisms may differ significantly in NS and MPT [67].

The three dimensionality of the real experiment must be

neglected, and differences between the nonideal effects in the
electron plasma and 2D hydro must be neglected. Interest-

ingly [123] good agreement is found in comparing 2D hy-

dro simulations and Penning Trap data (see Fig 1) when the

boundary conditions in the simulation are chosen to be free-
slip, even though there is viscous diffusion in the interior. This

boundary condition corresponds to a perfect conductor, hav-

ing constant potential.

Fig 1 shows important features of 2D hydro that also are
analogous to features of MHD in both 2D and 3D. In particu-

lar, one see the simultaneous formation of large scale coherent

structures that persist for long times, and the small scale fea-
tures of the cascade including small scale (presumably) dissi-

pative structures. In 2D hydro the observed transfer to large

scales is an inverse transfer of energy. The direct transfer to

small scale is an enstrophy cascade. In 2D MHD the inverse
transfer is that of mean square magnetic potential [43–45] and

the direct cascade is an energy cascade. In 3D MHD the di-

rect cascade is again of energy, and when magnetic helicity if

present there can be an inverse cascade. The behavior of cross
helicity is intermediate (see [141]).

If we assume a similarity decay for 2D hydrodynamics or

for the Penning trap system, then it is possible to state a

modified decay law that turns out to work reasonably well.
The needed modification is based on the recognition that

much of the vorticity distribution is somehow “destined” to

be locked up in the long-lived metastable state that is eventu-

ally achieved in Penning trap relaxation (see Section below).

Suppose this metastable state has an enstrophy Ωms. If one

removes Ωms from budget of enstrophy that has impact on

the direct cascade, then a similarity law can be written for

the remaining “free enstrophy” ΩFor excess above this long
term value [124]. To continue, assume that the global enstro-

phy decay timescale τ depends only on ΩFand a characteris-

tic length scale l. The only dimensionally consistent choice is

τ = 1/
√

ΩF. This is analogous to τ = l/
√
E in 3D, where

l is a correlation length. Then free enstrophy changes in time

according to dΩF/dt = −aΩF
3
2 . for which the solution is:

ΩF

ΩF
0

=

(

1 + 2 a
√

ΩF
0 (t− t0)

)−2

, (10)

Here ΩF
0 = ΩF(t0) is the initial free enstrophy. For an ini-

tially disordered fluid with large ΩF
0 , 10 gives ΩF ∼ t−2 for

a
√

ΩF
0 t � 1, as in the isotropic case predicted by Batchelor

[7]. The conditions for turbulence to be of sufficient strength

to justify a similarity law such as Eq. (III) are not entirely

clear, although large ΩF
0 /Ω

F
ms would seem favorable.

Fig. 2 shows a test of the proposed similarity decay or free
enstrophy, employing data from the University of Delaware

Penning trap [92]. The final metastable state enstrophies for

each experimental runs were used to compute Ωms , in terms

of which the free enstrophy was computed. A variety of dif-
ferent experimental initial conditions were used in the com-

parison. It is apparent that the similarity decay of free enstro-

phy is a reasonable hypothesis for these datasets. This is en-

couraging with regard to extending the von Karman-Howarth
analysis to more complex systems involving more than one

cascaded quantity, such as MHD in 2D and helical MHD in

3D.

FIG. 2: Scaled free enstrophy versus adjusted nonlinear time.

(Rodgers et al., PRL, 2010)
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IV. SPECTRA AND VARIABILITY

FIG. 3: Elsässer energy spectral densities E+ (blue bullets) and

E− (red open squares) as a function of the wavenumber k. The

dashed lines represents (see text) E± = C±ε
2/3

± [ε±/ε∓]2/3k−5/3,

for C± = 2, ε+ = 0.26 and ε− = 0.24 [130].

Probably the most famous result from classical hydrody-
namic turbulence theory is the inertial range spectrum in

which the omnidirectional energy is distributed across a wide

range of (inertial range) wavenumbers k with a powerlaw

spectrum varying as k−5/3. For hydrodynamic turbulence in
the inertial range the only important timescale is the local non-

linear time τnl = (kuk)−1 for wavenumber k and uk the con-

tribution to the speed from excitations near k. Then the energy

decay rate can be written ε ∼ u2
k/τsp, for spectral transfer

time τsp. However here the only choice is τsp = τnl, so using

u2
k = kE(k) for omnidirectional energy spectrum E , one finds

the Kolmogorov spectrum E(k) = Cε2/3k−5/3.

For MHD the situation is complicated by the multiplicity

of available time scales, thus rendering ambiguous the spec-

tral transfer time, which could, for example, depend on both
nonlinear time and Alfvén time. For zero cross helicity let

us designate the amplitude at k as Zk = Zk+ = Zk−, and

write the large scale magnetic field as B0. This may be ei-

ther externally applied, or B0 ∼ Z if it is due to the large
scale fluctuations themselves. Then for the Kolmogorov-

like theory of isotropic MHD, one chooses τsp = τnl as

in the hydro case, and the Kolmogorov spectrum is repro-

duced with E(k) = Cε2/3k−5/3 being the omnidirectional
spectrum of the total incompressible energy. The theory of

Kraichnan [63] supposes that the k-independent transfer of

energy ε must be in direct proportion to the triple lifetime.

Then ε = τ3(k)[E(k)]2k4 = τ3(k)Z
2
k/τ

2
nl(k). One notices

here that the spectral transfer time in principle differs form

the nonlinear time, and must involve the lifetime of the triple

correlations. Kraichnan chooses the triple lifetime to be the

Alfvén time τ3(k) = τA(k). From this it transpires that the

energy spectrum is E(k) = CKrε
1/2B

1/2

0 k−3/2. Pouquet et

al [116] made the important observation that the Alfvén time

may be due to a uniform large scale field or else the large scale

magnetic fluctuations, which have a similar influence on much
smaller scale inertial range fluctuations.

For finite cross helicity, Z+

k 6= Z−
k . For this case and

assuming a Kolmogorov like spectral theory, the develop-
ment only involves the local nonlinear times scales τ±nl(k).

Then (see [63, 160]) one finds that ε± = C±(Z±
k )2/τ±nl =

C±k(Z±
k )2Z∓

k = C±k5/2E±(k)
√

E∓(k). From these

two relations we conclude that the steady Kolmogorov-like

high Reynolds number MHD energy spectra are E±(k) =

C±ε
2/3

± [ε±/ε∓]1/3k−5/3. Thus, the nonlinear time scales
in the steady inertial range, can be written as τnl(k) ∼
[C

1/2

± ε
1/3

± [ε±/ε∓]1/6k2/3]−1. We note that the Elsässer en-

ergy spectra shown in Fig. 3 admit a range of wavenumbers

in which the spectral form is roughly varies in accord with

a k−5/3 behavior. Such wavenumber spectra are consistent
with local scale to scale transfer dominated by nonlinearity

and strain. However the physics of time decorrelation is dis-

tinct and may still depend on other effects and therefore other

available MHD time scales.
One example is the advection (or sweeping) characteris-

tic time at scale 1/k, which may be expressed as τsw(k) ∼
(kurms)

−1. Here the root-mean-square turbulent velocity
urms = 〈|u|2〉 is a global quantity that is typically dominated

by contributions from the large scales. Analogously, a charac-

teristic Alfvèn time (averaged over direction, see [63]) can be

defined as τA(k) ∼ (kbrms)
−1. [163] The root-mean-square

magnetic field brms could in principle include contributions

from both the fluctuations as well as a mean (uniform or very

large scale) magnetic field. For the simulation employed here,

brms is due only to fluctuations, which are assumed to have an
isotropic distribution. It is worthy of note that the sweeping

and Alfvénic propagation time scales both vary as ∼ k. Fi-

nally, the viscous dissipation time is defined as τd ∼ (νk2)−1.

In the inertial region, for reasonably small values of ν , both
sweeping and eddy-turnover times are much smaller than the

diffusive time. The wavenumber λd at which the dissipation

and nonlinear times are equal, τnl(1/λd) = τd(1λd), de-

notes the termination of the inertial range, and serves to de-
fine the Kolmogorov dissipation scale λd. Generally speak-

ing in high Reynolds number turbulence, and for wavenum-

bers k in the inertial range, we expect an ordering such that

τnl(k) > τ±nl(k) > τsw(k) ' τA(k) > τd(k). Indeed such
ordering allows among other things, the possibility of a quasi-

equilibrium properties within the inertial range.

The topic of the “correct” inertial range powerlaw index for
MHD turbulence is another perennially discussed hot topic.

The ambiguity between Kolmogorov −5/3 and Kraichnan

−3/2 scaling is often debated, and to some extent the di-

chotomy can be resolved simply by allowing the lifetime of
the triple correlations to be a composite of several effects

[116], so that

1

τ3(k)
=

1

τnl(k)
+

1

τA(k)
+ . . . . (11)

Indeed, using just the Alfvén and nonlinear time contributions
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to τ3 one can find a “spectral law” that interpolates neatly be-

tween −5/3 and −3/2 as the ratio of these two effects varies.

In the discussion of energy spectra it is traditional to appeal
to examples. As we will presently see, this is not necessarily

reliable. Nevertheless at this point it is worthwhile to illustrate

that the observed wavenumber spectrum of magnetic fluctua-
tions in the solar wind sometimes presents a very nice picture.

Fig. 4 shows an example of the one dimensional trace mag-

netic field spectrum computed from an interval Voyager 2 data

[79]. It is probably fair to say that this spectrum is “somewhat
typical” and lies close to the 5/3 prediction. The velocity field

spectrum is often a little different [112], which is implied by

the nonconstant Alfvén ratio Ev(k)/Eb(k) [79]. Of course

the steady spectral prediction, assuming local transfer and ig-
noring intermittency (see [125]) pertains only to the ideally

conserved flux of total energy, u2 + b2 so this disparity of

not of essential concern. Furthermore the exchange of energy

between velocity and magnetic field is known to be highly
nonlocal [1].

FIG. 4: Magnetic energy spectrum from Voyager 2 data, taken from

Matthaeus and Goldstein (1982). The spectral slope is very close to

−5/3.

Unfortunately, the solar wind is not so cooperative in pre-

senting a single picture that one can claim evidences univer-

sality of one theoretical formulation. For example Vasquez et

al [146] computed wavenumber spectra using Taylor hypothe-
sis from 960 intervals of single spacecraft magnetic field data

measured by the ACE spacecraft. The apparent inertial range

spectra were fitted with a powerlaw ∼ f−q in the (spacecraft

frame) frequency range of 8 mHz to 0.1 Hz. The interval

length used is one to several hours. The typical correlation

scale [83] is about 106 km, which corresponds to about 40

minutes using a 400 km/s typical solar wind speed. Therefore

the intervals used in the of the Vasquez et al study are a few
correlation lengths in duration and should be long enough to

obtain good estimates of the spectral index, with some spread

due to finite sample size. The distribution of spectral indices

q so obtained are showing in a histogram, reproduced here in
Fig (5). One see that the distribution is approximately cen-

tered on the Kolmogorov value of 1.67, but also substantially

overlaps with the 1.5 Kraichnan-Iroshnikov value. and has a

half-width that includes values from about 1.4 to 1.8.

FIG. 5: Histogram of the slope of the energy spectrum from solar

wind data at 1 AU. (Vasquez et al., JGR, 2007)

Of course the solar wind is not a controlled experiment, so

some of this observed variation of spectral index may be from
transient events, variations and nonsteady conditions, or even

non-MHD effects. Another possibility, that variation of q is

due to anisotropy, is discussed below in the following section.

In contrast to the solar wind observations, computer simu-

lation provide controlled experiments. Nevertheless, the con-

ditions imposed in simulations can differ in subtle ways ac-

cording to variations in approach, including diverse forcing
functions, boundary conditions, initial conditions, ratios of

length scales, etc. Another major factor is the presence and

strength of an applied uniform magnetic field. All of these

can influence results on the spectral distributions and inertial
range spectral indices obtained in simulation. This point was

emphasized in a striking way in a recent paper by Lee al [72].

In this study, three simulation results in 3D MHD are con-

trasted, each starting from approximately the same global en-
ergy, cross helicity and magnetic helicity, and having the same

Reynolds numbers. Even the energy spectra are very simi-

lar, each initial condition being an MHD generalization of the

Taylor Green vortex. When the simulations are analyzed at the
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time of peak dissipation, the results show very different spec-

tra, k-dependence of Alfvén ratio, and other parameters such

as the ratio of Alfvén to nonlinear times. The compensated to-

tal energy spectra are shown for these three runs, reproduced
from the Lee at al paper [72].

FIG. 6: Total energy spectra (a) compensated by k5/3 and averaged

over δt = 0.5 (1.52 turnover times) about the maximum of dissi-

pation and ratio of nonlinear to Alfvén time scales as a function of

wave number (b) for three runs from different initial fields but with

the same initial energy spectra. Slopes are given only as a reference.

The three arrows indicate the magnetic Taylor scale. Note that the

three spectra follow noticeably different spectral laws and possibly

different scale dependence for their time scales as well. (Lee et al.,

PRE, 2010)

The kind of variability seen in the above solar wind and

simulation results suggest that MHD turbulence may be rather

more variable than hydrodynamic turbulence. The problem

with variability runs even deeper for “inverse cascade sys-
tems” such as 2D hydro, 2D MHD, 3D MHD, the Penning

trap electron plasma, and similar systems. This is because

such systems have a strong tendency to accumulate excita-

tions in a only a few of its degrees of freedom, thus setting
up a system that through enhancements of nonlocal interac-

tions, can generate low frequency 1/f noise [36]. This type

of scale invariant noise is particularly frustrating to practical

attempts to uncover typical or average behavior. Systems with

1/f noise have long time tails on temporal correlation func-

tions that thwart attempts to invoke the classical ergodic theo-

rem in estimating ensemble averages though time integration.

Interestingly, this feature seems to be absent in homogeneous
hydrodynamic turbulence, but is present in systems that ad-

mit quasi-invariants, thus emulating temporarily the proper-

ties of systems that are strictly multiple ideal invariant inverse

cascade systems [37, 91]. It is of interest that 1/f noise is ob-
served in dynamo experiments and in the solar wind [84, 115].

V. ANISOTROPY

As mentioned in the introduction, the mean magnetic field

imposes a preferred direction on MHD turbulence that cannot

be removed by a Galilean transformation [63]. One of the as-
sociated effects, recognized long ago in laboratory plasma de-

vices [122, 161] is the generation of fluctuations that maintain

stronger correlation along the magnetic field than perpendicu-

lar to it. This effect was simulated first in 2D MHD [132], and
later in 3D [110]. These studies showed that spectral trans-

fer is unimpeded in the perpendicular direction in k−space,

but is suppressed in the parallel direction. Nonlinear cou-

plings that pump energy to smaller scales having larger per-
pendicular gradients are relatively unaffected by wave prop-

agation effects. On the other hand, couplings that produce

stronger parallel gradients are suppressed by Alfvén wave-
like couplings that become ever stronger as the mean field

strength is increased. This reasoning led to a rederivation of

the equations of Reduced MHD (RMHD) [139] using an ex-

pansion in a small parameter that is in effect ε = b/B0 [98]
for r.m.s. fluctuation strength b Order one nonlinear couplings

are found to occur for values of parallel wavenumber satis-

fying k‖ < εk⊥. Thus strong RMHD couplings occur when

the large scale perpendicular Alfvén time 1/(bk⊥) is less than
the parallel Alfvén time τA(k‖), or bk⊥ > B0k‖ [156]. Later

Goldreich and Sridhar [47] in effect refined this condition by

employing the local nonlinear time τnl(k) = 1/(bkk⊥) in-

stead of the transverse Alfvén time 1/(bk⊥), and assuming
steady state turbulence. The marginal condition for RMHD

then becomes bkk⊥ ∼ B0k‖, which is known as “critical bal-

ance.”

Independent of details, all of the above experimental, the-

oretical and simulation results point towards the preference
of MHD turbulence to excite more strongly those fluctuations

that have stronger perpendicular, rather than parallel, gradi-

ents.

Evidence has also been accumulating that the solar wind

contains a strong admixture of fluctuations that are in the

above sense, quasi-two dimensional. There a number of ways
that solar wind anisotropy can be measured. One approach

[81] is to measure a large number of two point correlation

functions (employing the Taylor hypothesis) at 1AU, with the

radial direction, along which the observations are made, vary-
ing from interval-to-interval relative to the mean magnetic

field direction. After accumulating the estimates, assuming

axisymmetry about the mean field, and averaging, the result is

the so-called Maltese cross correlation, shown in Fig 7. This
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FIG. 7: Two point autocorrelation of the magnetic field b · b′ as a

function of coordinates parallel, and perpendicular, the mean mag-

netic field (axisymmetry assumed) in the solar wind at 1AU from

≈ 600 days of ISEE-3 data. (From [81]).

observation led to use of a “two component model” for so-
lar wind fluctuations that no only proved useful in scattering

theory and observations [12, 131] but also led to direct ob-

servational tests of anistropy [13] which confirmed that this
parameterization of anisotropy corresponds reasonably well

to observed solar wind properties. It is also interesting that

considerations of the low Mach number approach to incom-

pressibility in MHD at low to moderate plasma beta (thermal
pressure over magnetic pressure) gives rise in a natural way

to geometrical restrictions that correspond directly to the the

two component model [157].

VI. GLOBAL RELAXATION

It has been recognized for quite some time that the mag-

netic field plays a special roles in electrodynamics, leading

the possibility of global relaxation processes that favor spe-
cial final states (e.g., [31, 153, 162]). This approach gained

favor in the 70’s when Taylor [142, 143] offered a physically

motivated explanation for relaxation to force free states in Re-

versed Field Pinch experiments, often regarded, along with
spheromaks [23] as the canonical laboratory devices for ob-

servation of MHD activity. This revival of relaxation the-

ory occurred almost simultaneously with the description of

inverse cascade in 3D MHD, driven by finite magnetic helic-
ity [41]. The inverse cascade phenomenon in driven MHD is

associated with the requirement that the nonlinear couplings

must simultaneous conserve two ideal invariants, the energy

E and magnetic helicity Hm. In analogy to its 2D hydro-

dynamic antecedent [64], transfer of turbulent excitation to

higher wavenumber is accompanied by a concomitant trans-

fer to lower wavenumbers, in order to simultaneously respect

both conservation laws.

It is possible to establish the possibility of inverse cascade

in a system such as 3D MHD by appeal to the absolute equilib-
rium Gibbs ensemble for an ideal Fourier Galerkin represen-

tation of the system, having a finite number of degrees of free-

dom, and exact set of quadratic conservation laws, and a Liou-

ville theorem for maintenance of the canonical Gibbsian dis-
tribution [41, 64, 71, 128, 140]. When “Bose condensation”

of a quantity into the longest allowed wavelength modes oc-

curs for the Galerkin system as its number of included modes

tends towards infinity, this is taken to be indicative of an in-
verse cascade for the corresponding driven dissipative system.

This activity has led to identification of inverse cascades in 2D

hydro, 3D MHD, 2D MHD, 3D Hall MHD, drift wave turbu-

lence, and other systems.

Adaptation of the same physical reasoning to the case of
decaying turbulence, leads to a set of selective decay princi-

ples [16, 78, 96, 97] that describe potential relaxed states of

an MHD turbulent system. Schematically, if A is an inverse

cascaded quantity andE a direct cascade quantity, then the se-
lective decay principle predicts that spectral transfer leads to

minimization of the ratio E/A, subject possibly to auxiliary

constraints, and often limited by allowed eigenmode structure

(i.e., geometry). Selective decay is a broad dynamical relax-
ation principle that accounts for behavior such as Taylor re-

laxation and the tendency for 2D MHD and hydro to evolve

towards states characterized by long-lived large scale struc-

tures.

Searching for numerical evidence in MHD in support of se-

lective decay led to the realization that there can be competing
relaxation processes in MHD turbulence. Selective decay in-

volves the energy and the magnetic invariant, but what about

the third invariant, the cross helicityHc?

It has been long known that minimizing energy subject to

constant Hc leads to what are sometimes called large ampli-

tude Alfvén waves, or “Alfvénic states“ [5, 6, 93, 111]. Note
that here familiar Alfvénic units are used. For incompress-

ible MHD these states are described by v = b at all points

in space, or v = −b at all points. These states (if permitted
by boundary conditions) persist for all time in the absence of

dissipation, as they lead to a full cancellation of the nonlinear

terms. The same solutions survive if a uniform mean mag-

netic field B0) is added to the fluctuation b; for that case the
solutions propagate either along ( v = −b) the B0 direction,

or antiparallel to it v = −b).

Large amplitude Alfvénic states are in fact one of the defin-

ing characteristics of observed solar wind turbulence and are

frequently observed [8–11, 24, 26], especially in the inner he-

liosphere. A classic example of Alfvénic turbulence in the
solar wind from the Belcher and Davis paper is shown in Fig

(8).

Based on the special position occupied by Alfvénic solu-

tions, and their observation in space, Dobrowolney, Mangeney

and Veltri [38] predicted that these states should emerge dy-

namically from MHD turbulence. This was verified in closure
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FIG. 8: Twenty-four hours of magnetic field and plasma data demon-

strating the presence of nearly pure Alfvén waves. The upper six

curves are 5.04-min bulk velocity components in km/sec (diago-

nal lines) and magnetic field components averaged over the plasma

probe sampling period, in gammas (horizontal and vertical lines).

The lower two curves are magnetic field strength and proton number

density. (Belcher & Davis, JGR, 1971).

theory [48], and subsequently seen to emerge from turbulence

evolution in 3D simulations [117] and in 2D simulations [80].

It is interesting to note that Alfvénic states appear to emerge
from a dynamic alignment process that can be globally de-

scribed by minimizing E for a specified Hc, or minimizing

〈u2 + b2〉/〈u · b〉

FIG. 9: Evolution of the normalized cross helicity ρ. Dashed line,

random initial conditions; solid line, Orszag-Tang vortex (Pouquet et

al., PRA, 1986)

In the 1980s, with evidence emerging in simulations and

experiments that magnetic-invariant driven relaxation such as

selective decay indeed occurs, while also the solar wind and

other simulation results supporting dynamic alignment, the

natural question to ask was whether both can be realized. Un-

fortunately the answer is immediately seen to be negative, as

can easily be demonstrated. 3D MHD selective decay (or Tay-
lor relaxation) requires minimizingE/Hm = (Ev+Eb)/Hm.

This clearly requires that Ev = (1/2)〈u2〉 → 0. Therefore

one cannot also require that u = ±b unless both fields van-

ish.

How close can one get to states that compromise between

the two principles? Ting et al. [144] examined this issue in

2D MHD using simulations and developed an explanation for

observed final states based on minimizing energy subject to
conservation of both the magnetic invariant A and the cross

helicity Hc. The three dimensional version of this study was

later carried out [141], using the same approach as employed

by Ting et al. for 2D. The constrained minimum energy states
[105, 141, 144], incorporating constraints from both selective

decay and dynamic alignment principles, are determined from

the variational problem

δ

∫

[(

|v|2 + |b|2
)

− α1v · b − α2a · b
]

d3x = 0 (12)

whereαi are Lagrange multipliers. The above Euler-Lagrange

equation imply that in the relaxed (long-time) state equilib-

rium is characterized by long wavelength states that have the

properties that

A1v = A2b = A3j = A4ω, (13)

where A1, A2, A3 and A4 are constants related to the La-

grange multipliers, and a is the potential vector (b = ∇×a),
j = ∇ × b is the current density, and ω = ∇ × v is the

vorticity. It is noteworthy that this principle predicts the pa-

rameter space curve (as illustrated in Fig 10) towards which

most numerically computed solutions eventually evolve.

The empirically demonstration that many simulation cases

evolve towards the constrained minimum energy curve is

rather interesting, but falls short of being a predictive theory

in a few ways. First, there is no definitive way to determine
precisely the position on the minimum energy curve to which

a particular simulation will evolve. Second, some simulations

do not evolve towards the curve, but rather some get “lost” in
the middle of the space, exhausting their energy before they

can evolve to a boundary. Others evolve towards the small

region near the origin labeled “IV” in Fig. 10 which is char-

acterized by vanishing magnetic field. This “hydrodynamic
region” of behavior seems to be attained by turbulence with

large scale, strong velocity shears. If sufficiently dominant,

the strong velocity field might drive zero cross helicity fluc-

tuations into the inertial range, thus destroying eventually the
initial Hc. If the magnetic helicity is insufficient to produce

a strong selective decay effect, this high shear turbulence can

evolve towards a ‘hydrodynamic-like” state. It is interesting

that the highly Alfvénic states observed in the inner helio-
sphere [11] eventually evolve towards lower cross helicity as

observed at 1AU and beyond [120]. One explanation offered

for this [121] is that the shear associated with high speed-low

speed stream interfaces destroys the cross helicity, as in the
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FIG. 10: Parameter space for evolution of 3D MHD spanned by axes

that measure the ratios Hm/E (indicative of selective decay) and

Hc/E (indicative of dynamic alignment. Evolution of a large num-

ber of simulations ( a few are shown) demonstrate that most cases

evolve towards the extremal curve that is analytically computed by

minimizing energy subject to constancy of both Hm and Hc. From

[141].

above Region IV behavior. This addresses why the solar wind
apparently does not dynamically align.

It is apparent that selective decay and dynamic alignment

are powerful but imperfect (or at least incomplete) princi-

ple for understanding relaxation in MHD. Efforts to describe
turbulent relaxation as precisely as possible some time ago

once again turned attention to the related field of 2D incom-

pressible. Very long simulation runs in 2D periodic geometry

showed that the system approached the selective decay state
with regard to some metrics, but slowly [82] in part due to

the tendency of isolated vortices to form [17, 86]. As vortices

merge, with bursts of turbulent activity, the system ever more

slowly approaches the target state of selective decay. Further
quantitative study revealed [99, 100] that another principle,

that of maximum entropy is an even better descriptor of the

relaxation. In this one postulates an entropy of the form

S =

∫

ω logω d2x. (14)

and then employing variational methods it is possible to de-

rives an equation for the maximum entropy subject to the con-
straint of constant energy and signed flux (see [99]). The

“sinh-Poisson” equation that describes this relaxed state had

derived earlier using a discrete line vortex representation [95],

and the applicability of that approach to decaying viscous con-
tinuum 2D turbulence was revived following these computa-

tions (see e.g., [18, 19, 118, 119]. It is noteworthy that the

correlation coefficient of the time dependent computed solu-

tion with the selective decay state in these kinds of numerical

experiments eventually exceeds 90 or 95 %, but the correla-

tion with the maximum entropy state has been measured to be

as high as 0.995. By now, this experiment has been repeated

numerous times.
One may of course wonder how robust this result is for

various 2D hydro systems, parameters and initial condition,

and in view of prior experience with relaxation in 2D MHD

this would seem prudent. In fact, Huang and Driscoll [56]
reported an experimental observation that selective decay is

more accurate than maximum entropy as a predictor of an

observed metastable state in the 2D hydro-like Penning trap

electron fluid. Rodgers et al [123] reexamined this conclusion
using a series of initial conditions for the electron trap exper-

iments that varied in their initial complexity and turbulence

level. (An example of one such initial condition is shown in

the left panel of Fig (1). The conclusion was given that, for
these particular experiments, the maximum entropy descrip-

tion worked at least as well as selective decay, the two descrip-

tions being about equivalent at low levels of initial turbulence.

For smaller scale more complex initial data, the maximum en-
tropy description became progressively more favored. There

is the additional element of complex plasma physics involved

in these electron experiments, so the results may be consid-
ered interesting, but not conclusive in the realm of fluid theory.

However it is noteworthy that in both MHD and in 2D hydro

there is evidence that the distinct relaxation processes may be

operative and may complete, sometimes with one only slightly
favored in the evolution. Furthermore, initial data appears to

be a significant factor in guiding the eventual relaxation.

The fact that a maximum entropy theory is a slightly better

predictor of the final state than is selective decay in 2D hydro
is noteworthy in itself and may be viewed as ample motivation

to find suitable maximum entropy theories and predictions for

2D MHD and 3D MHD. However in spite of some beginnings

towards this type of theory (e.g., [97]), there has not yet been
to our knowledge a convincing demonstration of maximum

entropy in MHD turbulence.

The above lack of clarity regarding relaxation and max-

imum entropy has persisted for several decades in spite of
heavy mathematical methods that have been brought to bear

on the subject of fluid entropies (e.g., [46]). The latter refer-

ence showed demonstrated in aa rather abstract mathematical
way that solutions of the Navier Stokes equations with a sin-

gle signed vorticity after long times, approach an Oseen vortex

solution that is related to a maximum entropy functional such

as that given above. A recent publication clarified this con-
clusion in a way perhaps more accessible to physicists [101].

Temporarily adopting the notation of that paper, we can con-

sider solutions of the Navier Stokes equation in infinite 2D

space without boundaries and initially a single sign of vor-
ticity. Suppose then that the entropy Eq. (14) is maximized

subject to conservation of integrated vorticity,

Ω ≡
∫

ω d2x = const. (15)

and the quantity

Γ ≡
∫

ωr2

t
d2x = 4νΩ +

1

t

∫

r2ω0 d
2x, (16)
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which from the equation of motion, is independent of time.

It is possible then to show that constrained maximum entropy

solutions are of the form

ω =
Ω2

πΓt
exp [−Ωr2/Γt]. (17)

Then as t becomes large, Γ → 4νΩ, and one finds

ω =⇒

t→∞

Ω

4πνt
exp

[−r2
4νt

]

(18)

which has the form of the standard Oseen vortex solution of

the Navier Stokes equation. This calculation shows that at

least for this one simple case, a maximum entropy solution

will emerge at long times. It may be the only case for which a
unique solution to the turbulent relaxation question is known.

VII. INTERMITTENCY, DISCONTINUITIES AND

MAGNETIC STRUCTURES

Simulations of magnetohydrodynamic (MHD) turbulence

[14, 114] and solar wind observations [29, 53, 76, 136] each

show evidence for intermittency in the form of characteristic
small-scale structures. A familiar, theoretically motivated ap-

proach to characterizing intermittency is to examine the scal-

ing of the exponents of the the higher order structure func-

tions. Examples are shown here from MHD simulation, in
Fig(11), and from solar wind observations, in Fig.(12). These

scalings can be studied on their own, but, as our hydrody-

namics colleagues remind us [137], the significance of these

scalings is that they correspond in some way to structure and
enhanced dissipation. For 2D MHD it is fairly easy to visual-

ize this association. The highly dissipative coherent structures

can be identified as current sheets that form dynamically be-

tween interacting magnetic islands [30, 78, 147]. Fig (13)
demonstrates how the nonGaussian tails of the current distri-

bution in a 2D MHD simulation correspond to strong current

sheets of this type. This is less easy to demonstrate in 3D and
in the solar wind.

To pursue understanding intermittency in MHD and in the

solar wind, a reasonable hypothesis is that the well-known fre-
quent appearance of structures traditionally identified as mag-

netic discontinuities [27, 145] (TS) are related to intermittency

of turbulence. As a preliminary step, a recent simulation study

[49] showed that intermittency- and discontinuity identifica-
tion methods, and concluded that a substantial fraction of the

observed discontinuities may be related to flux tube bound-

aries and intermittent structures that appear spontaneously in

MHD turbulence [30, 78, 127, 146, 147].

A well-known feature of solar wind observations is, in fact,

the appearance of sudden changes in the magnetic field vec-

tor, defined as directional discontinuities (DDs), which are de-
tected throughout the heliosphere [25, 27, 102, 103, 136, 145].

These changes are often seen at time-scales of 3 to 5 minutes,

although similar discontinuities are seen at smaller time scales

[146]. One interpretation of magnetic discontinuities is that

FIG. 11: Scaling exponents ζp for 3D MHD turbulence (diamonds)

and relative exponents ζp/ζ3 for 2D MHD turbulence (triangles).

The continuous curve is the She-Leveque model, the dashed curve

the modified model for MHD, and the dotted line the IK model.

(Muller & Biskamp, PRL, 2000)

FIG. 12: The scaling behavior of the PdF for δb as calculated from

the experimental data (white symbols) in the fast streams. The full

lines represent the fit obtained through a model. (Sorriso-Valvo et

al., GRL, 1999)

they are the walls between filamentary structures of a discon-

tinuous solar wind plasma [25, 28]. An alternative possibil-
ity is that the observed discontinuities are the current sheets

that form as a consequence of the MHD turbulent cascade

[78, 148]. Recent studies on magnetic discontinuities show

that their statistical properties are very similar to distributions
obtained from simulations of MHD turbulence [49, 50]. This

line of reasoning argues that thin current sheets are character-

istic coherent structures expected in active intermittent 2D and
3D MHD turbulence [90], and which are therefore integral to

the dynamical couplings across scales.

In order to establish a link between solar wind discontinu-

ities and spatial patches of strong current sheets, here we illus-

trate here a comparison between solar wind datasets and direct
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FIG. 13: PDF of the out-of-plane electric current density Jz from the

2D simulation, compared to a reference Gaussian (standard deviation

σ). For each region I, II, and III, magnetic field lines (contours of

constant magnetic potential Az :> 0 solid,< 0 dashed) are shown;

the colored (red) regions are places where the selected band (I, II, or

III) contributes. (Greco et al., ApJ, 2009)

numerical simulations of MHD. Regarding the simulations,
we focus on properties of discontinuities that are recorded by

magnetic field measurements at a single spacecraft in inter-

planetary space. We adopt a spacecraft-like sampling through
the simulation domain [see Greco et al. [49]], interpolating the

magnetic field data along the one-dimensional path s, we can

identify discontinuities (TDs) with the following procedure:

1. First, to describe rapid changes in the magnetic field,

we look at the increments

∆b(s,∆s) = b(s+ ∆s) − b(s), (19)

where ∆s the spatial separation or lag. For this sim-
ulation we choose a small scale lag, ∆s ' 0.67λdiss,

which is comparable to the turbulence dissipation scales

(see previous sections).

2. Second, employing only the sequence of magnetic in-

crements, we compute the normalized magnitude

=(∆s, `, s) =
|∆b(s,∆s)|

√

〈|∆b(s,∆s)|2〉
`

, (20)

where 〈•〉` = (1/`)
∫

` •ds denotes a spatial average
over an interval of length `, and ∆s is the spatial lag

in Eq. (19). The square of the above quantity has been

called the Partial Variance of Increments (PVI) [49] and

the method abbreviated as the PVI method. For the

FIG. 14: Top: Spatial signal =(∆s, `, s) (PVI) obtained from the

simulation by sampling along the trajectory s in the simulation box,

with ∆s ' 0.67λd and ` ' 535λC . Bottom: Same quantity ob-

tained from solar wind data, with ∆s = 20 s and ` ' 500λC .

numerical analysis performed here ` ' 535λC , where
λC = 0.18 is the turbulence correlation length - a natu-

ral scale for computing averages.

The PVI time series, evaluated using Eqs. (19)-(20) is re-

ported in Fig. 14. The illustration spans more than 500 cor-

relation lengths. This spatial signal has been compared to a
time signal measured by a ACE solar wind spacecraft, near 1

AU, over a period of about 20 days (lower panel of the fig-

ure). In order to facilitate the comparison, we converted the
time signal to a spatial signal, using the average velocity of the

flow, and then normalized to a solar wind magnetic correlation

length of 1.2× 106 km.

The PVI increment time series is bursty, suggesting the
presence of sharp gradients and localized coherent structures

in the magnetic field, that represent the spatial intermittency

of turbulence. These events may correspond to what are qual-

itatively called “tangential discontinuities” and, possibly, sites
of enhanced dissipation and magnetic reconnection.

Imposing a threshold θ on Eq. (20), a collection of stronger

discontinuities along the path s can be identified. That is, we

select portions of the trajectory in which the condition

=(∆s, `, s) > θ (21)

is satisfied, and we will employ this condition to identify can-

didate coherent structures and potential reconnection sites. To
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FIG. 15: Probability density function of the spatial signal = (PVI)

obtained from ACE measurements (blue line) and simulation (red

line). The error bar ±σ is displayed in the legend and the value of σ
is the expected fractional error in the PDF due to counting statistics.

understand the physical meaning of the threshold θ, we recall

Greco et al. [49, 50] that the probability distribution of the PVI

statistic derived from a nonGaussian turbulent signal is em-
pirically found to strongly deviate from the pdf of PVI com-

puted from a Gaussian signal, for values of PVI greater than

about 3. As PVI increases to values of 4 or more, the recorded

“events” are extremely likely to be associated with coherent
structures and therefore inconsistent with a signal having ran-

dom phases. Thus, as θ is increased, stronger and more rare

events are identified, associated with highly nonGaussian co-

herent structures.

Finally, in Fig. 15, we show the probability distribution
functions of the PVI signal for both the observational and sim-

ulation data. The comparison tells us that there is a great sim-

ilarity within the errors [107].

VIII. LOCAL RELAXATION AND NONGAUSSIANITY

The two central features of MHD turbulence discussed in
the last two sections are generally studied independently: in-

termittency of inertial range fluctuations, and MHD relaxation

processes. The first manifests trough the appearance of high
kurtosis of vorticity and current, multi-fractal scaling of mo-

ments, and inhomogeneous dissipation of energy (in space).

The second is characterized by distinctive states such as Tay-

lor relaxation, selective decay, global dynamic alignment, and
helical dynamo action [78, 88, 105, 141, 142, 144]. As de-

scribed above, relaxation has most often viewed as a conse-

quence of multiple global ideal conservation principles, char-

acterized by dynamical times much longer than the character-
istic times of intermittency.

Recently [127], it has been demonstrated that undriven
MHD turbulence spontaneously generates coherent spatial

correlations of several types, associated with local Beltrami

fields, local Alfvénic correlations, i.e., directional alignment

of velocity and magnetic fields, local force free states, and

FIG. 16: PDFs of the cosine of the angle for the sets of field. (Ser-

vidio et al., PRL, 2000) The sets of fields are: {v, b} (red), {v, ω}
(green), {j, b} (blue), {j, ω} (pink).

anti-alignment of magnetic and fluid acceleration compo-
nents. These correlations suppress nonlinearity to levels lower

than what is obtained from Gaussian fields, and occur in spa-

tial patches. These are not true quasi-equilibria, as the nonlin-
earity is only very rarely fully suppressed, but the systematic

occurrence of these correlations indicates that the turbulence

adjusts to the presence of large forces through a rapid dynam-

ical response to reduce these stresses. These rapid relaxation
processes are necessarily local, simultaneously occurring in

various locations without regard to global compatibility other

than the global conservation laws. Intuitively, this picture

gives rise to a cellularization of the turbulence, which is in
fact observed in simulations [85, 127] and in the solar wind

[108].

To demonstrate the rapid local relaxation of MHD tur-

bulence, we illustrate the distributions (PDFs) of the angle

[66, 106]

cos θ =
f · g
|f ||g| (22)

where {f , g} represents one of {v, b}, {v,ω}, {j, b} and

{j,ω}. In Fig. 16 these four PDFs are shown. The initial

Gaussian distribution with null (net) helicities corresponds to
imposing a flat initial distribution of Eq. (22). Quickly, as

the nonlinearity develops, strong alignments appear. These

aligned (anti-aligned) fields correspond to a Beltramization

of the magnetofluid, similar to the Navier-Stokes (NS) case.
Even though global helicities remain small, the magnetofluid

locally self-organizes into patches which contain several types

of correlations.

Since the conclusions bear a close resemblance to the prop-

erties of 3D MHD global relaxation, it is tempting to extend

the original interpretations. Global long time relaxation gives
rise to the same Beltrami properties as suggested in Fig (16),

for both velocity v and magnetic b fields. These emerge from

variational principles [78, 96, 144] in which minimum energy

states [105, 141, 144] are solutions to Eq. (12). The asso-
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ciated Euler-Lagrange equations imply that the relaxed states

are described by: v ∝ b ∝ j ∝ ω, where a the po-

tential vector (b = ∇ × a), j = ∇× b is the current density,

and ω = ∇ × v is the vorticity. In global relaxation, these
conditions are applied to the entire system and at large times,

with the coefficients of proportionality implied in Eq. (13)

take to be uniform constants. However the observation of

local patches of enhanced Beltrami, force free and Alfvénic
correlations at short times suggests another interpretation in

which the coefficients of proportionality defining the general-

ized Beltrami states are viewed as piecewise constant and time

varying. It remains for further work to show if this description
can adequately account for the cellular structure of MHD tur-

bulence, in which patches of correlation are bounded by near-

discontinuous slowly evolving coherent structures that sepa-

rate the relaxed regions.

There are numerous quantitative implication of the above

picture of rapid relaxation, only some of which have been ex-

amined so far. One consequence of the increased probability
of occurrence of the Beltrami correlations (cos θ = ±1) is the

emergence of regions in which the nonlinear term has become

suppressed and the energy cascade has become inhibited [59].
From a simple look at the MHD equations, the alignment ob-

served in Fig. 16 suggests that the strength of the nonlinear

term is “suppressed” [127]. Indeed, quantitative examination

of simulations data has shown that the turbulent accelerations
(| ∂v

∂t
|, | ∂b

∂t
|) are much weaker that if they were computed with

a Gaussian (random) field [127].

While the rapid-alignment processes occur, suppressing the
strength of the nonlinear terms, it was also shown that en-

hancement of the kurtosis occurs, thus supporting the inter-

pretation as the development of “cells”. The kurtosis is an

elementary measure of the degree of the intermittency of the
system. Therefore if the suppression is driven by nonlinear

relaxation, then one would expect to see signatures of coher-

ent structure formation even in ideal flows. Indeed it was

suggested years ago [42] that current sheets form exponen-
tially fast in ideal MHD. Recently analysis of both dissipa-

tive and ideal 2D MHD simulations demonstrated that spectral

transfer, beginning from band limited Gaussian initial con-
ditions, gives rise to high kurtosis excitations at the higher

wavenumbers.[150], even at very early times.

The overall picture, in which it may be possible to under-
stand the close linkages between cascade and intermittency,

between rapid local relaxation and suppression of nonlinear-

ity, between coherent structures and cellular boundaries, and

ultimately between slow global relaxation and fast local relax-
ation, remain far from complete. The connections reviewed

above have been established in both 2D nd 3D MHD stud-

ies, bu the picture in 3D is of course less clear, due to both

to physical complexity and numerical limitations. Much more
work will be needed to complete this picture, and to establish

a firmer analytical understanding beyond the sketchy sugges-

tions implied above.

It does appear however that a general view is emerging

that the nonlinear dynamics of decaying 3D incompressible

MHD leads spontaneously to several rapid, local relaxation

processes, favoring states having strong alignments or anti-

alignments different fields, namely those that suppress the

strength of nonlinearities.. The production of spatial patches

of these correlations requires that the statistical distribution of

velocity and magnetic field become nonGaussian, as can be
seen by formulating the correlations of (at least) fourth order,

such as 〈(v · b)2〉 that must grow to form Alfvénic patches

Our conclusion is that this multifaceted rapid relaxation is in-

timately related to the formation of spatial intermittent struc-
tures. A simple real space picture emerges: when patches of

suppression of nonlinearity are formed, the fourth order statis-

tics become nonGaussian, as the gradients become concen-

trated along boundaries of the patches. For example, two re-
gions can become approximately force free, but the boundary

between them will not be force free [22]. This would concen-

trate nonlinear activity near cellular boundaries of turbulence.

Magnetic reconnection is one example of the type activity that
can occur at these boundaries [129].

IX. THIRD ORDER LAW IN MHD

A well known Kolmogorov–Yaglom (“4/5”) law relates the

third-order structure function to the energy dissipation rate

[40, 60, 94]. Usually it is stated with the assumptions of
isotropy, homogeneity, and time stationarity of the statistics

of velocity increments δu = u(x + r) − u(x) [velocity u,

spatial positions x + r and x]. It also apparently requires

adoption of the von Kármán hypothesis [58] that the rate of
energy dissipation ε approaches a constant nonzero value as

Reynolds number tends to infinity. Without the need for as-

suming isotropy, one finds

∂

∂ri

〈

δui |δu|2
〉

= −4ε, (23)

where 〈· · · 〉 indicates an ensemble average and a sum on re-

peated indices is implied. If isotropy is further assumed then,

〈

δuL |δu|2
〉

= −4

d
ε |r| , (24)

where d is the number of spatial dimensions and δuL = r̂ ·δu
is the increment component measured in the direction of the
unit vector r̂ parallel to the relative separation r.

Extension of the third-order law to the case of incompress-
ible MHD was reported by Politano and Pouquet [113], who

remained close to the approximations made in the hydrody-

namic case. Without assuming isotropy, they found

∂

∂ri

〈

δz∓i
∣

∣δz±
∣

∣

2
〉

= −4ε±, (25)

which, after adoption of isotropy, reduces to,

〈

δz∓L
∣

∣δz±
∣

∣

2
〉

= −4

d
ε±r, (26)

where δz± = z±(x + r) − z±(x) are the increments of the

Elsässer variables and δz±L = r̂·δz±. The constants ε± are the

mean energy dissipation rates of the corresponding variables
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z± = u ± b, where b is the magnetic field fluctuation in

Alfvén speed units.

There has been a flurry of activity in the past few years,

geared towards measurement of the cascade rate in the solar
wind using various forms of the isotropic third order law [74,

75, 135, 138], including the anisotropic form. [109] Many of

these estimates arrive at heating rates around 104 JKg−1s−1,

which agrees well with estimates from temperature gradients
[146]. (See also Coleman (1968) [33].)

X. EXTENSION TO KRSH AND INTERMITTENCY OF

DISSIPATION

The Kolmogorov Refined Similarity Hypothesis (KRSH)
[61] is the unproven but extraordinarily useful theoretical

construct that connects the probability distributions of iner-

tial range increments and averages of the dissipation function
[104, 137]. The extension to MHD is not completely straight-

forward, for the usual reasons that there is more than one cas-

caded field, and ambiguities arise. For a useful starting place,

see [87]. It is noteworthy that the KRSH might be formally
viewed as the motivation for scaling studies of higher order

structure functions, yet, as described above, this activity has

proceeded [14, 53, 76, 114, 136], in spite of the absence of

a clear statement of the correct form of the hypothesis. (This
may be an oxymoron of sorts, since it is in the end KRSH is a

working hypothesis.)

Apart from complications associated with MHD Theory,

application of KRSH extensions to low density solar wind and
astrophysical plasmas must confront another great problem –

we do not know the correct functional form of the dissipa-

tion function, or even the complete roster of appropriate phys-

ical process to include in it. The problem of examining pos-
sible dissipation processes in the solar wind and interstellar

medium is a very active one at present, and a complete review

would be well outside the present scope. For a few starting

points, see [2, 3, 68–70, 126, 134]. A fuller understanding of
this problem is a great challenge for the coming years.

As a final remark on this point we note that for a low den-

sity space plasma one might expect to find relationships of the
form (schematically)

δZ3
s

s
∼ εs → Ts (27)

where δZs is a measure of the (possibly mixed) magnitude
of vector increments at separation s, εs is the average of the

dissipation function over scale s, and Ts is a measure of the

similarly averaged temperature, or perhaps the local temper-

ature excess. The first relationship in Eq (27) is akin to the
KRSH, although the precise form of the increment might be

a fruitful topic of conversation (see [87]). The second rela-

tionship is even less clear, although intuitively it seems that

if one deposits a large amount of heat locally, the tempera-
ture very well might increase. The first relationship cannot be

examined in the solar wind because we do not know ε. The

second relationship cannot be examined in most simulations

because they are incompressible, and in any case we do not

know the correct form of the heat conduction for a plasma

such as the solar wind. But what we can do is assume the

second relationship and then compare increments to temper-

ature averages in the solar wind. This was done recently by
Osman et al (2011) [107]. The approach was to employ the

PVI statistic discussed above in an earlier section to find lo-

cations of near-discontinuous magnetic structure. The higher

values of PVI indicate more rare and stronger discontinuities.
Then the proton temperature (and other diagnostics) were con-

ditionally sampled for increasing PVI. One such result is re-

produced here in Fig (17). It is readily apparent that the sam-

ples with large PVI are hotter on average and have hotter tails.
This is completely consistent with the idea that the dissipa-

tion function, whatever it is in the solar wind, is more active

within and near the coherent structures. Evidently the solar

wind plasma, even though it is not hydrodynamics nor even
precisely an MHD medium, shares with classical turbulence

the ideas that the dissipative structures are localized, provid-

ing a meaning to the ideas of intermittency for this plasma that

is similar to what Kolmogorov’s ideas mean for hydrodynam-
ics.

FIG. 17: PDFs of the ion temperature, where each PDF corresponds

to a different range of PVI values. As the PVI values increase, the

probability density decreases at lower temperatures and increases at

higher temperatures. Also, the mean ion temperature increases with

increasing PVI. The corresponding PDFs for electron heat flux mag-

nitude, electron temperature, and local dissipation behave in a similar

manner. (Osman et al., ApJ, 2011)

XI. CONCLUSIONS AND OMISSIONS

MHD turbulence and its applications to real physical sys-

tems remains a fascinating, complex and rapidly developing
field of physics. Naturally many of its features remains close

to their hydrodynamic antecedents, but numerous new com-

plications arise. Here we aimed to provide a quick sampling

of some MHD results for homogeneous plasmas, for related
systems in 2D hydro and electron plasmas, and for a ma-

jor field of application in the solar wind. The subject is big

enough that a complete review of even these special topics

has not been possible, and we apologize for what have doubt-
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less been numerous and egregious oversights on the discus-

sion and references. Furthermore we made essentially no at-

tempt to cover very important fields such as laboratory plas-

mas, astrophysics, magnetic reconnection, planetary, stellar
and laboratory dynamo theory, MHD power generation and

otherd industrial applications, as well as deeper connections

with plasma physics through multispecies fluid models and

other variants of the MHD plasma. The omission of discus-
sion of relaxation in laboratory reversed field pinch, sphero-

mak and tokamak plasmas is particularly egregious due to the

close relationship those studies have to those that are included

here. For excellent reviews and introductory material in these
areas, see [22, 23, 54, 143]. Another major deficiency here is

the lack of discussion of closures [48, 116]. An interesting and

high-powered example is the two-scale direct interaction ap-

proximation that has been applied to development of tractable
MHD closures (e.g., [155]. These indeed have the potential

to make progress in problems of current interest [154]; how-

ever, as with other interesting subjects, there has not been an

opportunity to delve into that interesting subject here.

We hope that, within the limited context of the sample pro-

vided here, there may be adequate connections afforded by
the references for an interested reader to get a foot hold in a

few interesting problems relating to turbulence in magnetized

fluids, and in the physics of the solar wind.
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