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Introduction

The goal of this talk is to show what type of progress (if any!) the
mathematical analysis of deterministic phenomena (rather than statistical
theory of turbulence) can bring to the understanding of turbulence.
Emphasis is put on the Euler equation and on the large Reynolds number
limit.
Beside my personal taste and choice two good reasons for that :
• For the Navier-Stokes equation, technical (but not easy at all ) progress
have been obtained since the work of Leray mostly contributing to the
understanding of the validity of the equation as a model.
• For the Euler quation many results have been recently produced with a
rather accessible interpretation.
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Introduction

• Consider , Discuss, Use, Weak solutions, Dissipative solutions of
Euler equations.

• Discuss the relation between boundary effects and generation of
turbulence.
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Introduction

Analyzing the turbulence generated by boundary effects, one finds a series
of equivalent criteria for the absence of turbulence which would define
turbulence as a situation where any of this effects is present:
More precisely there is no turbulence if one of the following effect is
present:
• No anomalous dissipation of energy.
• No non trivial Reynolds stress tensor.
• No production of the vorticity at the boundary.
• No production of vorticity at a boundary layer of size ν
• No detachement .
If turbulence is present none of the above statement is true. The Prandlt
equation of the boundary layer are not valid. There is a non trivial
Reynolds tensor which is the spectra in the sense of Kolmogorov-Heisen
-berg and which in the mathematical sense is a non trivial Wigner Measure.
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Contents

As a consequence the talk is organized as follow:
• Presentation of the Navier-Stokes equation with emphasis on the
Reynolds Number.
• Comparison between the notion of weak convergence and the issues of
statistical theory.
• Cauchy problem for the smooth solutions of the Euler equation (Cauchy
Problem is a name for stability properties).
• Notions of weak solutions.
• The wilde weak solutions of Scheffer, Shnirleman, De Lellis and
Skezehelydi.
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Contents

• The notion of viscosity solutions and dissipative solutions.
• The relation between convergence to the Euler equation and the non
appearance of turbulence as it was formulated by T. Kato.
• Some comments on the situation for the planar flows (2d Euler
equation).
• Justification of the point of view of Kato by doing a similar analysis at
the level of the convergence of solutions of Boltzmann equations to
solutions of the Euler equation.
• Conclusion.
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The Navier-Stokes Equations

∂tuν + uν · ∇uν − µ∗∆uν +∇pν = 0

∇ · uν =
∑

1≤i≤d
∂xi (uν)i = 0 , uν · ∇uν =

∑
1≤i≤d

(uν)i∂xi uν .

Called incompressible because of the relation ∇ · u = 0 .
But also equations for fluctuations: ε the Mach number ratio between the
fluctuation of velocity and the sound speed:

u = εũ θ = 1 + εθ̃ , ρ = 1 + ερ̃

∇x ·ũ = 0 , ∂t ũ + ũ ·∇x ũ +∇x p̃ = µ∗∆ũ ,
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The Navier-Stokes Equations

Density and temperature fluctuations ρ̃ , θ̃ passive scalars:

ρ̃+ θ̃ = 0 , Boussinesq approximation
d+2

2 (∂t θ̃ + ũ ·∇x θ̃) = κ∗∆θ̃ Fourier Law.

Phenomenological derivation or consequence of the Boltzmann equation
Hilbert 6th problem.
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In general ν in Navier-Stokes not the real viscosity of the fluid but the
inverse of the Reynolds number, a rescaled viscosity adapted to the size of
the fluctuations of the velocity is given by the formula:

Re =
UL

µ∗

In all practical applications R is very large therefore ν is very small.
Bicycle 102, Industrial fluids (pipes ships...) 104, Wings of airplanes 106,
Space Shuttle108, Weather Forcast, Oceanography 1010, Astrophysic 1012.

It would be natural to study the limit ν → 0 in the Navier-Stokes equation
or even to put ν = 0 and then consider the Euler equation... Things are
not so simple but may be useful. Almost no basic mathematical progress
has been done on the understanding of the structure of solutions of the
Navier-Stokes equations since Leray.. On the other hand important
progress have been done concerning the Euler Equation...May be because
it is more “mathematical. ”
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Connect these progress with the law of Kolmogorov for
turbulence

With convenient boundary conditions:

d

dt

∫
Ω

|u(x , t)|2

2
+ ν

∫
Ω
|∇u(x , t)|2dx ≤ 0 ,

< ., . > statistical average '' uν weak limit ,

(〈uν ⊗ uν〉 − 〈uν〉〈uν〉) Reynolds stress tensor ,

0 ≤ lim
ν→0

(uν − uν)⊗ (uν − uν) = lim
ν→0

(uν ⊗ uν − uν ⊗ uν) w-Reynolds s.t. .

0 < ε = ν〈|∇uν |2〉 '
ν

T

∫ T

0

∫
Ω
|∇uν |2dxdt Kolmogorov hypothesis ,

〈|u(x + r)− u(x)|2〉
1
2 ' (ν〈|∇u|2〉)

2
3 |r |

1
3 Kolmogorov law .

Claude Bardos Time dependent solutions of the Navier-Stokes and Euler equations and Turbulence.



• Law is in average with a forcing term.
• Boundary effects are physical forcing terms.

• The averaged energy dissipation (ν〈|∇uν |2〉)
2
3 does not go to zero! as

ν → 0 .
• The averaged regularity is uν(x+r)−uν(x)|

r
1
3

bounded in Hölder space C
1
3
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Basic estimates for 3d Euler equation energy and vorticity

∂tu +∇ · (u ⊗ u) +∇p = 0 , ∇ · u = 0 , in Ω .

u · ~n = 0 on ∂Ω ,

∂tω + u · ∇ω = ω · ∇u in Ω

∇ · u = 0 ,∇∧ u = ω in Ω , and u · ~n = 0 on ∂Ω

Formal Energy conservation
d

dt

∫
Ω

|u(x , t)|2

2
dx = 0

Formal 2d Vorticity transport ∂tω + u · ∇ω = 0 ,

ẋ(s) = u(x(s), s) ,
D

Dt
ω =

d

dt
ω(x(t), t) = 0.

∂tuν +∇ · (uν ⊗ uν)− ν∆uν +∇p = 0 , uν = 0 on ∂Ω

⇒ 1

2

d

dt

∫
Ω
|uν(x , t)|2dx + ν

∫
Ω
|∇uν(x , t)|2dx = 0 Formal energy cons.

Claude Bardos Time dependent solutions of the Navier-Stokes and Euler equations and Turbulence.



One word about Cauchy Problem for the Euler equation

∂tω + u · ∇ω = ω · ∇u ⇔ dω

dt
= ω∇K (ω) ' ω2

Compared with

y ′ = Cy 2 , y(t) =
1

1− Cty(0)
.

• Local existence, stability of smooth solution in good mathematical
spaces C 1,α and persistence of higher stability results.
• Instability of solutions in less regular spaces. Example of the shear flow

u(x , t) = (u1(x2), 0, u3(x2, x1 − tu1(x2))) ∂x2u3 = ∂2u3 − t∂3u3∂1u1

u(0, x) ∈ C 0,α implies u(t, x) ∈ C 0,α2
not imply u ∈ C 0,α . for t > 0 .

• With smooth initial data loss of regularity is an open problem driven by
sup |ω(x , t)| (Beale Kato Majda) or absence of oscillations in the direction
of vorticity (Constantin Fefferman Majda). But at least existence,
uniqueness and stability are assumed for short time.
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Weak solutions

Why weak solutions?
• Naturally in L2(Ω) (energy controlled)!
• Weak solution are compulsory in compressible Euler equation with the
presence of shocks.
• Since global existence of smooth solution is an open problem why not to
consider weak solution.
• Weak solutions are compatible with weak convergence from
Navier-Stokes to Euler.
• The main difficulty is the limit (whatever construction would be
proposed ) in the nonlinear term. For weak limit : subsequences bounded
in L∞(Rt ; L2) the w-Reynolds S.T. may not be 0 .
• Weak solutions are the only objects compatible with anomalous
dissipation of energy:∫

Ω
∇ · (u ⊗ u)udx 6= 0 or even not defined
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Weak solutions, Definition

φ ∈ C∞(Rt × Rd
x )With compact support ,

∂tu +∇ · (u ⊗ u) +∇p = 0,∇ · u = 0 u · ~n = 0 on ∂Ω ,

⇔∫
Rt×Ω

(u∂tφ+ (uS(φ)u) + p∇ · φ)dxdt = 0 ,

S(φ) =
∇φ+∇tφ

2
and u(x , 0) = u0(x) .
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Onsager criteria for conservation of energy for weak
solutions:

0 =

∫ T

0

∫
Ω
∇(u ⊗ u)udxdt '

∫ T

0

∫
Ω
|∇

1
3 u|3dxdt ' (∇

1
3 u) ∈ L3(Ω× 0,T )

Proof by Constantin, E and Titi in L3(B
1
3
3,∞)

Conversely conservation of energy for weak solution does not implies
regularity. Simple example with the shear flow.
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Weak-Strong Stabilty

u weak solution and w smooth solution (with ∇w ∈ L1(0,T ; L∞(Ω)))
then one should have local stability:∫

Ω
|u(x , t)− w(x , t)|2dx ≤ (

∫
Ω
|u(x , 0)− w(x , 0)|2dx)e2

∫ t
0 |S(w(s))|∞ds

Theorem
Any weak solution which satisfies the relation:

E (t) =
1

2

∫
Ω
|u(x , t)|2dx ≤ 1

2

∫
Ω
|u(x , 0)|2dx = E (0)

satisfies the weak strong stability estimate (in particular local in time
uniqueness for smooth initial data).
These statement have to be compared with a family of “mathematical
results ” Scheffer, Shnirelman, De Lellis, Szekelyhidi and Wiedeman.
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Theorem
• For any initial data (even a regular one) u0 ∈ L2(Ω) there exists an
infinite family of global in time weak solutions.

• Given any domain Ω̃ with Ω̃ ⊂⊂ Ω and any positive function e(x , t) ≥ 0
with the following properties

support e(x , t) ∈ C∞(Ω̃× [−T ,T ])

x ∈ Ω̃× [−T ,T ]⇒ e(x , t) > 0 ,

and x /∈ Ω̃× [−T ,T ]⇒ e(x , t) = 0 .

Then there exists and infinite set of data u(x , 0) with weak solutions such
that:

u(., t) ∈ C (]− T ,T [, L2(Ω)) , u(., 0) = u0 ,

1

2
|u(x , t)|2 = e(x , t)⇒ E (t)=

1

2

∫
|u(x , t)|2dx=

∫
e(x , t)dx prescribed .

In particular, there exists an infinite set of initial data with an infinite
number of solutions of the Cauchy problem.
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Observe that these solutions are compact in space time and existence of
such objects in the real world would solve the energy crisis. This seems
also to indicate that the Euler equations by themselves are not completely
physical...With the d’Alembert paradox the validity of such equations
would also imply that the planes do not fly.

Figure: Euler, D’Alembert, Navier and Stokes

⇒Importance of Viscosity and Boundary conditions.
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• Observe that if u(x , t) is regular on Ω×]0,T [ any weak solution w(x , t)
such that w(x , 0) = u(x , 0) must be of increasing energy for t > 0 .
• Keeping in mind that 1/3 type regularity implies conservation of energy
and the existence of solution u ∈ C (Rt ; L2(Ω)) , such that the energy is
not conserved leads to the following questions:
1 Does there exist a threshold α such that regularity greater than α
guarantee the conservation of energy
2 Does there exists solutions just less regular than α for which energy is
not conserved. At present one has energy conservation with α > 1

3 and
existence of solutions with u ∈ C (Rt , L

2) more or less α = 0 , which means
a huge gap... Shortening the gap is an open problem.
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Some comments about the construction of the wild
solutions

Present proof shares much similarities with the problem of the invariant
imbedding:
Both use the formalism of differential inclusions and accumulation of
oscillations.
The problem of isometric imbedding in R2 : Is it possible for any r > 0 to
construct a map U = (u1(x1, x2), u2(x1, x2)) R2 7→ R2 which preserves the
lengths of the curves and maps the unit circle |x | = 1 inside the disk
|x | < 0. The answer is no if you want U to be C 2 because there will be an
obstruction at the level of the curvature (an observation made long time
ago by Gauss). And the answer is yes if you just require U ∈ C 1 (which is
necessary to define the length but allows infinite curvature , Nash (1974)
Kuiper (1955) ).
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Figure: Euler, D’Alembert, Navier and Stokes
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(
| ∂U∂x1
|2, ∂U

∂x1
· ∂U∂x2

∂U
∂x1
· ∂U∂x2

| ∂U∂x2
|2

)
=

(
1 0
0 1

)
.

Relax the equality for an inequality(
| ∂U∂x1
|2, ∂U

∂x1
· ∂U∂x2

∂U
∂x1
· ∂U∂x2

| ∂U∂x2
|2

)
≤
(

1 0
0 1

)
.

Claude Bardos Time dependent solutions of the Navier-Stokes and Euler equations and Turbulence.



The Euler equation is equivalent to the linear system

∂tv +∇ ·M +∇q = 0 , ∇ · v = 0 (1)

with the constraint M = v ⊗ v − |v |
2

d
Id (2)

for (v ,M, q) ∈ L∞(Rt × Rn
x ;Rn × Sn0 × R)

Next we relax the constraint and consider solution of (1) satisfying the
estimate:

(v(x , t),M(x , t)) ∈ Rn×Sn0 |v(x , t)|2 ≤ 2e(x , t) and v⊗v−M ≤ 2e(x , t)

n
In

Show that this set is non empty and that the extremal points of its convex
hull correspond to the relation (2) at this point.
As in the isometric imbedding (and as in the first proofs of Scheffer and
Shnirelman) one constructs solutions with the accumulation oscillations, of
small amplitude but high frequency, with a very careful analysis.
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Viscosity solutions and Dissipative solutions

A term coined by P.L Lions and M. Crandall for solutions of equations
with no viscosity but limit of solutions of equations with viscosity.

S(w) =
1

2
(∇w + (∇w)t) , ∂tw + P(w · ∇w) = E (x , t) = E (w)

∂tu +∇ · (u ⊗ u) +∇p = 0 ,∇u = 0 , u · ~n = 0 with u smooth ,

∂tw + w · ∇w +∇q = E (w) , ∇ · w = 0 .

1

2

∫
Ω
|u(x , t)− w(x , t)|2 ≤

∫ t

0

∫
|(E (x , s), u(x , s)− w(x , s))|dxds

+

∫ t

0

∫
Ω
|(u(x , s)− w(x , s)S(w)u(x , s)− w(x , s))|dxds

+
1

2

∫
Ω
|u(x , 0)− w(x , 0)|2dx . (3)

A dissipative solution is as a divergence free tangent to the boundary
vector field which for any test function w as introduced above satisfies the
relation (3).
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Hence the stability of dissipative solutions with respect to smooth
solutions and, in particular, the fact that whenever exists a smooth
solution u(x , t) any dissipative solution which satisfies w(., 0) = u(., 0)
coincides with u for all time.
However, it is important to notice that to obtain this property one needs
to include in the class of test functions w vector fields that may have non
zero tangential component on the boundary.
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Viscosity limit

∂tuν + uν · ∇uν − ν∆uν +∇p=0 , u = weak− lim
ν→0

u ,

∂tw − ν∆w + w · ∇w +∇q = E (w) ,

1

2

d

dt
|uν(x , t)− w(x , t)|2L2(Ω) + ν|∇uν(t)|2L2(Ω)

≤ |(S(w) : (uν − w)⊗ (uν − w))|+ |(E (w), uν − w)|
+ν(∇uν ,∇w)L2(Ω) + ν(∂~nuν , uν − w)L2(∂Ω)) ,

1

2

∫
Ω
|u(x , t)− w(x , t)|2 ≤

∫ t

0

∫
|(E (x , s), u(x , s)− w(x , s))|dxds

+

∫ t

0

∫
Ω
|(u(x , s)− w(x , s)S(w)uν(x , s)− w(x , s))|dxds

+
1

2

∫
Ω
|u(x , 0)− w(x , 0)|2dx + lim

ν→0
ν

∫ t

0

∫
∂Ω

(∂~nuν , uν − w)dσdt
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With no boundary convergence (modulo subsequence) to a
dissipative solution is always true.

If there exists a smooth solution u(x , t) on [0,T ] with the same initial
data then u(x , t) = u(x , t) .

1

2

∫
|u(x , 0)|2dx =

1

2

∫
|u(x , t)|2dx ≤ 1

2

∫
|uν(x , t)|2dx ≤ 1

2

∫
|u(x , 0)|2dx ⇒ lim

3→0

∫ t

0
ν|∇uν(x , t)|2dxdt = 0

• In the absence of boundary and with the existence of a smooth solution
of the Euler equation there is no anomalous energy dissipation, no
w-Reynolds stress tensor.
• In the absence of regular solution (loss of regularity for Euler solution or
wild initial data) u is still a dissipative but may be not a weak solution
(Reynolds stress tensor 6= 0 and may not be the unique solution. Non
uniqueness of dissipative solutions for a large set of initial data.
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Claim: It is in the presence of physical boundaries that the
relation between turbulence and energy dissipation is the
most evident .

A “general family ” of boundary conditions containing the “classical”:

uν · ~n = 0 and (∂~nuν + (C (x)uν)τ + λ(ν)uν = 0 on ∂Ω (4)

with λ(ν, x) ≥ 0 and C (x) ∈ C (Rn,Rn) (5)

uν · ~n = 0⇒ ((∇⊥uν) · ~n)τ = (C (x)uν)τ

Hence with uν · ~n = 0 are of the type (4):

Dirichlet with λ(ν) =∞ ,

Dirichlet-Neumann with λ(ν) = C (x) = 0 ,

Fourier with C (x)(uν) = (∇⊥uν))⇒ ν((S(uν)~n)τ + λ(ν)uν = 0 ,

With vorticity ν((∇(uν)−∇⊥(uν))~n)τ + λ(ν)uν = 0 .

Claude Bardos Time dependent solutions of the Navier-Stokes and Euler equations and Turbulence.



Energy estimates

1

2

∫
|uν(x ,T )|2dx +

∫ T

0
(ν

∫
Ω
|∇uν |2dx +

∫
∂Ω
λ(ν)|uν(x , t)|2dσ)dt =

1

2

∫
|uν(x , 0)|2dx + o(ν)

1

2

d

dt
|uν(x , t)− w(x , t)|2L2(Ω) + ν|∇uν(t)|2L2(Ω)

≤ |(S(w) : (uν − w) ⊗ (uν − w))|+
|(E (w), uν − w)|+ ν(∂~nuν ,w)L2(∂Ω)) + o(ν) .
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Theorem Convergence to a dissipative solution:

1 In any case, in particular Dirichlet (ν
∂uν
∂~n

)τ → 0 in D′(∂Ω×]0,T [) ,

2 For Fourier-Navier λ(ν)uν → 0 : in D′(∂Ω×]0,T [)→ 0 ,

3 λ(ν)→ 0 or λ(ν) bounded and

∫
∂Ω×]0,T [

λ(ν)|uν(x , t)|2dσdt → 0 ,

4 In any case Kato lim
ν→0

ν

∫ T

0

∫
Ω∩{d(x ,∂Ω)<ν}

|∇uν(x , t)|2dxdt → 0 .
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No turbulence in the presence of physical boundary

In the presence of a smooth solution u for Euler equation on [0,T ] with
the same initial data the following facts are equivalents
• w − lim(uν ⊗ uν) = (w . lim uν)⊗ (w − lim uν) . No w-Reynold stress
tensor.
• uν ⇀ u . Weak convergence to the solution of the Euler equations.
• ∀0 < t < T 1

2

∫
Ω |w . lim uν(x , t)|2dx = 1

2

∫
Ω |u0(x)|2dx . Energy

conservation.
• uν → u . Strong convergence
• limν→0 ν

∂uν
∂~n = 0 in D′(Ω) . No anomalous vorticity production at the

boundary.
• limν→0

∫ T
0 (
∫

Ω ν|∇uν(x , t)|2dx + λ(ν)
∫
∂Ω |uν |

2dσ)dt = 0. No
anomalous energy dissipation.
• limν→0

∫ T
0

∫
d(x ,∂Ω)<ν |∇uν(x , t)|2dx = 0. No anomalous “order ν”

boundary layer energy dissipation.
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Remarks

• The existence of a Prandlt boundary layer implies Kato hypothesis.
(converse may not be true).
• If one of the above equivalent fact is not satisfied one would expect
generation of turbulence.
The limit is not a solution of the Euler equations, there is no energy
conservation, there is anomalous energy dissipation, the weak Reynolds
stress tensor is not 0 .
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Turbulence spectra and Wigner Measure

Eventually the weak Reynolds tensor is defined in term of Wigner Measure

lim
ν→0

((uν ⊗ uν)− (u ⊗ u)) = lim
ν→0

(uν − u)⊗ (uν − u) =

∫
Rn

W (x , t, ξ)dξ

W (x , t, ξ) = lim
ν→0

Wν(x , t, ξ)

Wν(x , t, ξ) = (
1

2π
)d
∫
Rn

uν(x +

√
νy

2
, t)⊗ uν(x −

√
νy

2
, t)e iy ·ξdy

−(u(x , t)⊗ u(x , t))

The turbulence spectra!!!
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Figure: Kato: Prandlt..Boundary layer, Kelvin Helmholtz, Von Karman vortex
street.
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Proof of Kato argument

For any w ∈ T (∂Ω×]0,T [) introduce a sequence wν(s, τ, t) (in geodesic
coordinates near ∂Ω ) with

support(wν) ⊂ Ων×]0,T [ ,∇ · wν = 0, and on ∂Ω×]0,T [ wν = w ,

|∇τ,twν |L∞ ≤ C , |∂swν |L∞ ≤
C

ν
.

From

(0,wν) = ((∂tuν +∇(uν ⊗ uν)−∆uν +∇pν)wν) =

−(uν , ∂twν) + ((uν ⊗ uν) : ∇wν) + ν(∇uν ,∇wν)− (ν∂~nuνw)L2(∂Ω×]0,T [) = 0

⇒ |(ν∂~nuνw)L2(∂Ω×]0,T [)| = |((uν ⊗ uν) : ∇wν)|+ o(ν)

Poincaré estimate and a priori estimate

⇒ |((uν ⊗ uν) : ∇wν)| ≤ C

∫ T

0

∫
Ων

ν|∇uν |2dxdt → 0 .

Claude Bardos Time dependent solutions of the Navier-Stokes and Euler equations and Turbulence.



More comments about 2 Euler equations

The 2d Euler equation describes planar flows and as such the vorticity is
conserved along the trajectories of the particles (Lagrangian coordinates).
Therefore (that can be observed by direct computation one has)

∂tω + u · ∇ω = 0 .

This may bring more informations but no simplifications for many of the
problems considered above.
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More comments about 2 Euler equations

• It was proven by Wolibner, Kato, Youdovitch that with initial data in
C 1,α there is a unique solution defined for all time which is as smooth as
the initial data.
However this regularity may deteriorate with time (for instance if the initial
data u0(x) has 2 bounded derivatives same will be for the solution at any
time t > 0 but there is no proof that these derivatives have an exponential
growth (as it would be the case for system solutions of classical dynamical
systems) the only thing that can be proven is a control by a double
exponential exp(expKt) .
The reason is that an L∞ control of the vorticity does not implies an L∞

control of all the gradient ∇u.
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More comments about 2 Euler equation

• One can prove easily the existence of weak solutions with initial data
having vorticity no more singular than a positive measure (or a measure
with a “reasonable ” number of change of sign).
Such solutions would be a vorticity solutions has defined above.
• On the other hand all the results concerning wild solutions described
above are as valid in 2d as in 3d . Therefore it is fully open to understand
what type of regularity on the vorticity would ensure uniqueness and some
type of stability.
ω0 ∈ L∞ implies existence of a unique weak solution. This is not true for
u0 ∈ L2 with no extra hypothesis on the vorticity. Is there any relation
between the wild weak solution and the weak solution constructed say with
ω0 ∈ L1

• All the issues relating the relation beetwen boundary effects and
turbulence as described above in 3d are similar in 2d .
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More comments about 2 Euler equations

• The discussion about weak solutions has more importance than a game
for mathematicians!! In particular when one consider in 2d planar fluids
with vorticity concentrated on a curve.
This configuration carries the name of Kelvin-Helmholtz problem and is
currently used to describe experiments or numerical simulation
What is known is:
1 That an initial data with a very smooth (analytical) vorticity
concentrated on a very smooth (analytical ) curve leads to an unstable
local in time solution described by a integral equation called the
Birkoff-Rott equation.
2 That an initial data with vorticity concentrated on a curve will lead to a
smooth solution (defined for all time) solution of the Navier Stokes
equation with any positive viscosity ν > 0 .
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More comments about 2 Euler equation

3 That when ν goes to 0 the solution converges (with minor hypothesis on
the change of sign of the vorticity on the curve) to a dissipative-viscosity
solution of the Euler equations defined for all time.
However due to the lack of uniqueness no one knows if this weak limit
coincides with the solution of the Birkoff Rott equation when it is defined
(for a finite time).
An explicit example the Prandlt-Munk vortex shows that the weak limit
may not be, in some singular cases, described by the Birkoff-Rott equation
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Boltzmann→Euler limit with boundary effect

To consolidate the fact that Kato approach may be the correct point of
view and that the boundary condition

ν(∂~nuν + (C (x)uν)τ + λ(ν)uν = 0

(which contains Dirichlet and Neumann) is the good one one can argue
that the introduction of a microscopic derivation based on the Boltzmann
equation leads to the same results.
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Fε(x , v , t) ≥ 0: Density of particles which at the point x ∈ Ω and the time
t do have the velocity v ∈ Rn

v ) of the (rescaled in time) Boltzmann
equation:

ε∂tFε + v · ∇xFε =
1

ε1+q
B(Fε,Fε) Quadratic operator in Rn

v

with Maxwell Boundary Condition for v · ~n < 0 in term of v · ~n > 0 :

F−ε (x , v)=(1−α(ε))F +
ε (x , v∗)+α(ε)M(v)

√
2π

∫
v ·~n<0

|v · ~n|F +
ε (x , v)dv ,

0 ≤ α(ε) ≤ 1 , v∗ = v − 2(v · ~n)~n = R(v) ,

M(v) =
1

(2π)
n
2

e−
|v|2

2 , Λ(φ) =
√

2π

∫
Rn
v

(v · ~n)+φ(v)M(v)dv ,

Λ(1) = 1(proba!) F−ε (x , v) = (1− α(ε))F +
ε (x ,R(v)) + α(ε)Λ(

Fε
M

) ,

Fε(x , v , 0) = M(v)(1 + εg(v)) lim
ε→0

uε = lim
ε→0

1

ε

∫
Rn
v

~vF (ε(x , v , t)dv .
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• For q = 0 , uε = 1
ε

∫
Rn
v

vFεdv converges to a Leray solution of
Navier-Stokes with the boundary condition:

u · ~n = 0 and ν((∇u +∇tu) · n)τ + λ(ν)u = 0

λ(ν) =
1√
2π

lim
ε→0

α(ε)

ε
Dirichlet⇔ lim

ε→0

α(ε)

ε
=∞ .
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Entropy Dissipation versus Energy Balance

H(F |G ) =

∫
Ω×Rn

v

(F log(
F

G
)− F + G )dxdv Relative entropy ,

1

ε2

d

dt
H(Fε(t)|M) +

1

εq+4

∫
Ω

∫
R3
v

DE (Fε)dvdv1dσ +
1

ε3

∫
∂Ω

DG = 0

DE(F )(v , v1, σ) =
1

4
(F ′F ′1 − FF1) log(F ′F ′1 − FF1)b(|v − v1|, σ) En. dissipation ,

DG(F ) =

∫
R3
v

v · ~nH(Fε|M)dσdv The Darrozes-Guiraud local entropy .
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h(z) = (1 + z) log(1 + z)− z)

√
2πDG =

∫
R3
v

v · ~nH(Fε|M)dσdv =

√
2π

∫
R3
v

v · ~nH(M(1 + εgε)|M)dv =
√

2π

∫
R3
v

v · ~nM(v)h(1 + εgε)dv

=
√

2π

∫
R3
v

(v · ~n)+M(v)h(εgε(v))dv −
√

2π

∫
R3
v

(v · ~n)+M(v)h(εgε(Rv))dv

= Λ(h(εgε))− Λ(h[(1− α(ε))εgε + α(ε)Λ(εgε)])

≥ α(ε)

[
Λ(h(εgε(v)))− h(Λ(εgε(v))))

]
≥ 0
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Hence the final entropy estimate:

1

ε2

d

dt
H(Fε(t)|M) +

1

εq+4

∫
Ω

∫
R3
v

DE (Fε)dvdv1dσ

+
1

ε2

α(ε)

ε

1√
2π

∫
∂Ω

[Λ(h(εgε(v)))− h(Λ(εgε(v))))]dσ ≤ 0 .
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Compare formally to energy with gε = ε−1(Fε −M)/M → u · v

1

2

d

dt

∫
Ω
|uν(x , t)|2dx + ν

∫
Ω
|∇uν |2dx +

∫
∂Ω
λ(ν)|uν(x , t)|2dσ → 0

1

ε2

d

dt
H(Fε(t)|M)→ 1

2

d

dt

∫
Ω
|u(x , t)|2dx

1

εq+4

∫
Ω

∫
R3
v

DE (Fε)dvdv1dσ ' εqν
∫

Ω
|∇u +∇⊥u|2dx

1

ε2

∫
∂Ω

[Λ(h(εgε(v)))− h(Λ(εgε(v))))]dσ '
∫
∂Ω
|uε(x , t)|2dσ

α(ε)

ε

1√
2π
' λ(εqν)
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Entropic convergence to a regular Euler solution ⇒

1

εq+4

∫
Ω

∫
R3
v

DE (Fε)dvdv1dσ

+
1

ε2

α(ε)

ε

1√
2π

∫
∂Ω

[Λ(h(εgε(v)))− h(Λ(εgε(v))))]dσ → 0

Theorem Sufficient condition for the convergence to Euler:

lim
ε→0

α(ε)

ε
= 0 or

α(ε)

ε
≤ C <∞ and

1

ε2

∫
∂Ω×]0,T [

[Λ(h(εgε(v)))− h(Λ(εgε(v))))]dσdt → 0

Conjecture (Kato!)

1

εq+4

∫ T

0

∫
Ω∩{d(x ,∂Ω)≤εq)}

∫
R3
v

DE (Fε)dvdv1dσdt→ 0 .
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Conclusion

• The main observation of this talk is the fact that it is in the analysis of
the limit (for <e →∞) of problems with boundary effect that there is the
most evident similarity between a deterministic and a statistical theory of
turbulence.
• What can be shown is that in this situation the non existence of
turbulence in the fluid is characterized by a serie of equivalent properties.
• This means that turbulence would be characterized by violation of any of
these properties (conservation of energy, zero Reynolds stress tensor, no
production of vorticity in a very small boundary layer etc...)
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Conclusion

• In the course of the analysis it is important to keep in mind recent
mathematical progress on the Euler equations to contribute to the issue of
the weak limit.
• Even if in the present formulation Euler equation have no physical
relevance. With the d’Alembert paradox they would imply that plane
cannot fly and which the recent works on wild solutions they would solve
the energy crisis.
• The introduction of the Boltzmann equation at the end of the talk is
done to consolidate the point of view given previously on the effects of the
boundary.
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