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INTRODUCTION

" La recherche en turbulence semble présenter deux possibilités d’approche plutét con-
tradictoires, ou, usant de termes plus modérés, complémentaires. Dans I'une, un prohléeme
de plus en plus simplifi¢ est posé, de sorte que finalement, une seule complication éssentielle
est retenue, et tous les efforts sont alors concentrés pour la compréhension  de ce probléme
trés simplifié. ' ‘ ‘ :

La turbulence homogene et isotrope d’un fluide incompressible 2 nn nombre de Reynolds

élevé est ainsi un tel probléme « par excellence » (et il est encore loin d’une compréhension
totale).

L’autre moyen d’approche est Pexploration, méme ¢« en gros » seulement, ou d'une facon
grossiére, de norubreuses sortes de complications nouvelles felles que la présence d'un
gradient moyen, d'une réaction chimique, d’'une force de masse, ou, comme c’est le cag iei,
Pintroduction de la compressibilité ou de la conductivité électrique. Cela étant, ce second
mode d’approche nait 4 la fois de la curiosité pour des phénoménes nouveaux, et de I'im-
patience due A la lentenr du progrés réalisé vers ume pleine compréhension, méme des
probiémes Jes plus simples. '

Bien sir, l’espéce de < compréhension > qui résulte de tels efforts moins pénétrants
n'est évidemment que partielle, _ :

Les roles relatifs de ces deux sortes d’investigation somi quelque peu analogues a ceux
familiers, communément usités dans les sciences de .la vie, o 'on peut se saisir des pro-
blémes a < différents niveaux de leur organisation », ¢’est-d-dire que Pon n’attend pas néces-
sairement jusqu’a ce que tout soit entiérement résolu i un niveau plus simple, plus élémen-
taire. (Par exemple : on n’attend pas pour résoudre les problémes biochimiques que tout le
mécanisme de la chimie aif été déduit de la physique de P'atome).

-Dans un ordre d’idées tout a fait comparable, il semble qu’il vaille la peine de poser des
questions concernant les grandes lignes d'un phénoméne tel que la taurbulence en écoule-
ment compressible, ou la turbulence d’un fluide conducteur de I'électricité en présence d'un
champ magnétique intense, longiemps avant que la théorie compléte et satisfaisante du mé-

canisme de transfert d’énergie ¢n turbulence imcompressible et isctrope ne soit totalement
achevée, '

En fait, il est possible d¢ rapporier quelques progrés réels faits dans ces nouvelles
tentatives, et le but de la session spéciale d’aujourd’hui est de discuter le genre de progres
que ces problémes ont réalisé jusqu'ici.

- Lorsqu’on a pu faire entrer en ligne de compte des propriéiés snpplémentaires nou-
velles, il existe demx questions typiques sur le comportement général d'un phénomene.

b



358

La premiére peut étre posée ainsi :
Dans quelle mesure les aspecis usuels déja eétablis seront-ils modifids, et de quelle
fagon les solutions seront-elles transformées ?
Un exemple assez classique. est Peffet de la compressibilife dans la théorie de T'aile,
Dans ce cas, on répond a la question en établissant une «correction de compressibilité ».
Dans de nombreux eas, la seconde question est de loin plus intéressante :
Y a-t-il apparition de phénoménes supplémentaires entiérement nouveaux qui n’exis-
taieni pas du tout avant Yintroduction de nouvelles propriétés 7
L’apparition des ondes de choe en fluide compressible constituc un exemple classique,
et Papparilion d’une nouvelle sorte d’ondes se propageant, les ondes d’Alfvén, en magnéto-
dynamique des fluides en est un autre.
En ce qui concerne les éconlements turbulents, les deux types de questions sout légiti-
mes, et significatives. Bien sfir, Peffet de la compressibilité a été étudié plus longtemps, et
on dispose de documents expérimentaux ‘plus nombreux.
La recherche sur la turbulence en magnéto-dynamique des fluides en est encore & un stade

de développement plus spéculatif, et il n’existe pratiquement pas de mesures publiées pour
confirmer les idées présentées ici.

Turbulence research appears to have two rather contradictory or, using a milder term,
two complementary modes of approach. In one, a more and more simplified problem is
posed so that finally only one essential complication is retained and then all efforts are
concentrated on understanding that oversimplified problem. Homogeneous isotropic tur-
bulence of an incompressible fluid at high Reynolds. number is such a problem “ par excel-
lence ” (and it is still far from complete understanding). The other type of approach is the
exploration, even if only “ in the large ", or in a crude way, of many new kinds of complica-
tions such as the presence of a mean gradient or of a chemical reaction or of a body force,
or, as in the present case, the inclusion of compressibility or of electrical conductivity.
Admittedly, this second approach is born both out of curiosity for new phenomenon and
out of impatience with the slow progress made toward full understanding even the simplest
problem, Of course, the kind of * understanding " derived from such less penetrating efforts
is clearly only a partial one. The relative roles of the different approaches are somewhat
analogous with the familiar ones comion in the life sciemces where one may tackle the
problem at ¢ different levels of organization ”, meaning that one does not necessarily wait
until everything is completely solved on the simpler, more clementary level. (E.g., one does
not wait to solve biochemical problems until all chemical behavior has been derived from
atomic physics.) -

In quite a similar vein, it appears worthwhile to ask questions about the gross features
of 'such phenomena as compressible flow turbulence or the turbulence of an electrically

‘ conductive fluid in the presence of strong magnetic fields, long hefore the complete and
satisfactory ‘theory is completed for the energy transfer mechanism in incompressible
isotropic turbulence. :

- As a matter of faect, it is possible to report some actual progress made in these new
attempts and the purpose of today’s special session is to discuss the kind of progress these
problems have 80 far attained.. ' :

_‘When new additional properties have been permitied to come into play, there abe two
typical questions about the general behavior of a phenomenon, The first can be posed this
way : How much the old, already well-established features will be modified, in what W&y
will the. solutions be “ warped ” ? A rather classic example is the compressibility effect in
airfoil theory. In this case the question in answered by developing a “ compressibility
correction ”.

In many ways the sccond type of question is far more interesting : Will entirely new,
additional phenomena appear that were not present at all before the new properties were
included ? The appearance of shock waves in a compressible flow is the classic cxample,

and the appcarance of a new kind of Propagating wave, the Alfvén wave, in magneto-fluid-
dynamics is another one. o
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As far as turbulent flows arc concerned, both fypes of questions are legitimate and
meaningful. Of course, the effect of compressibility has been. studied longer and there is
more experimental evidence available, Research in magneto-fluid-dynamic turbulence is still
in a morc speculative stage of development and there are virtually no measurements
published to confirm the ideas presented here.

Effect of compressibility

Incompressible turbulence is a random solenoidal velocity field with a concoramittant
pressure fluctuntion field, The pressure field is, however, completely determined by the.
velocity fluctuation field and the controlling variable of the turbulence is the random
vorticity field. Random temperature fluctnations in low speed flow have been treated
as g transport problem by regarding temperature as a “ passive contaminant ” without
actually considering any dynumic effect on the turbulence itself. "

The effect of compressibility has been studied by inspecting the * weak field " limit
of the Navier-Stokes equations (Kovaszsay, 1958) (CuU and KovAszyay, 1958). The
governing equations for a compressible viscons heat-conductive gas ave nonlinear partial
differential equations, Even if the transport properties (viscosity and heat conductivity)
are assumed 1o he constant there are still six dependent variables (three components
of the velocity, the pressure, the density and the temperature) of the gas governed by the
§ix equations (conservation of mass, conservation of the three components of momentum,
conservation of the energy and the equation of state for the gas). The weak field limit
{linearization around the “ rest solution " u=0, ¢ = const, p == const, T == const) makes
the decoupling of three independent “ modes” possible. These are (With some gimpli-
fications.

YVorticity (or solenoidal) mode :

(1)
Pressure or acousﬁc mode : :
T4l 1P =0 (2
ag atg — . . . )
Entropy mode :
&1 4 .
aét B 3v vEs=0 - (3)

(The superscript () emphasizes that it is a first order approximation.)

Equation (1) represents the solenoidal velocity field that can be identified with the
incompressible turbulence. Equation (2) governs acoustic wave propagafion and also
" includes all irrotational velocity fields. The third mode (3) can be regarded as a random
temperature field. The three modes do not interact among themselves within the
framework of the linear theory, except through boundary conditions on solid walls,
because they are imposed on the velocity and temperature, not on the geparate modes
and in general more than one mode contributes to both temperature (P and &) and to
velocity (© and P). '

Within the framework of the linearized theory, there is no energy transfer from one
wavelength to another, therefore the usefulness of such an approach iz sutomatically
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limited to such things as the interpretation of measurements at a point or it may be
conceptually useful as the first step in a systematic expansion scheme. The complete
second order theory has been developed by Cru and Kovasznay (1958). The three
linearized modes are “ driven " by the nonlinear interactions. and a complete expansion
scheme wag developed. In essence the governing equations have the left-hand side as in (1),
(2) and (3), but the right-hand side contains a “ driving " term, a bilinear expression of
the three modes, always formed with the lower (first) order solutions.

If we put w —® 4 @@; P=PO 4 PO); § =81 | §@) the vorticity mode
equation becomes, :

(2}
€ (gz‘ —v V2l = [0 wM], 4 [PO; PO, + [8D; 80, +
+ [ PO, - [P 80,  [8W; ], (4)
The pressure mode equation now becomes |
1 2p@ .
VIR — i T (oW 0]y - [PO; PO 50 8], 4
+ [0 PO Jp - [PO; 8O 4 [8O; 9], (5)
and finally the entropy mode equation
8™ 4y : : :
5 g VR = (oW 0] 4 [PE; PO 4 [80); 8] 4
| +[0®; PO]s 4 [PO; 80]s + [§0); o] (6)

where the square brackets represent bilinear expressions in terms of the known w, P and 8
each such expression acting as “ source ” term generating the particular mode that is
indicated by the subseript o, P or 8. The expansion scheme can be followed up to any
order and the left-hand side of the equation is always in the same form, only the explicit
form of the nonlinear expressions becomes more and more involved. (E. g., in the third
order equations both (" and w®® appear), The second order theory has been developed
quite complefely and the second order (bilinear) interactions have been all identified.
(Cuv and KovAsznay, 1958), Just to mention the most interesting ones : the generation
of the aconstic mode by the double interaction of the solenoidal velocity field {vorticity
mode) [w@; w®]p (LicErHILy, 1952) and the generation of vorticity by the bilinear
interaction (actually a vector cross-product of the density (entropy) gradient with the
pressure gradient) [P¢); 8(1), (BsErkxEs term). ’

In ene respect even the second order theory falls' short for the compressible
turbulent boundary layer or in other shear flows. Second order interactions (double
products in the dependent variables) may transfer energy from one mode to another
or can scatter waves of one type on a disturbance of another type, but the transfer of
energy from the mean motion. into the turbulent motion, requires third order terms. This

can be seen clearly from the structure of the turbulent energy equation (ReEyxolps
equation) '

1 U;
e [f W ] = u} ul <+ viscous and diffusion terms. . (7

Similar equations can be developed for the generation of mean square entropy
fluctnations by “ scrambling " 2 mean entropy gradient. The essential point is that in
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the mode siructure also, the presence of a mean gradient must be regarded as a separate
{(even though steady) modc and the generating term on the right hand side of eg. (7) is
of third order in the velocity disturbances. Since the turbulent fluctnation levels are
usually one order of magnitude smaller than the corresponding mean flow variables,
higher order interactions (domble or triple products) containing one meuan flow gradient
may overshadow the corresponding terms formed as the product of fluctuating quantities
slone. A good example ig the sound generation by turbulent shear fiows. It was first
pointed out by LieaTHILL (1952) that the mean velocity gradients contribute much more
to the generation of sound than the double products formed by the fluctuating velocities
alone,

In dealing with compressible turbulence a great deal of work was done on sound
generation, One must emphasize, however, that in the cases treated so far the sound
must be regarded more ag a by-product of the turbulent flow, than an integral part of
the dynamics of turbulence. In other words, the sound energy radiated away from the
turbulent region represents only 4 small fraction of the kinetic energy flux of turhulence
and it is even small compared to the total viscous dissipation. One expects that the
ratio of sound radiztion loss lv the viscous dissipation will increase as the' MacH number
inereases and erude guesses suggest that the two energy losses may become equal around
M = 5, In low supersonic Macu numbers (M < 2) the gound generation is quite small
although the sound level on the rather arbitrary scale of the human ear (decibels) may
be still quite offensive. ‘

Magneto-fluid dynamic turbulence

Turbulence in an electrically conduective fluid became the subject of interest spurred
by recent advances in astrophysics as well as in plasma experiments aimed at attaining
magnetic confinement at a high temperature.

Our point of view is to regard the fluid as a continuum and no consideration on the
particle level will enter directly, All microscopic phenomena are taken into account only
globally as “ bulk ” properties, such as viscosity, electrical (scalar) comduetivity, ete,
This approach is probably valid for plasmas that are dense enough so that both the
Desyg shielding length and the ion cyelotron radius are much smaller than the smallest
length scale of the turbulent motion (KorLmocororr scale) and the plasma frequency is
also much higher than the typical frequencies of the turbulence

_ T,
Ik » Ip lnm6,9\/-

u'
7 € fr fo = 9000/ n,

where o :
w' r.m.s. turbulent velocity fluctuations in em/sec

Ix KoLMoGOROFF length in em

lp DesYE shielding length in em =

A microscale in em

fr  plasma frequency in cps

n, electron dengity in em—3

T, - electron temperature in °K ‘ : '
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‘ In liquid metals the molecular scale is very small : on the other hand, the very large
magnetic viscogity is a great obstacle to experimentation, ThL magnetlt. kinematic
vigcogily is defipned as 1

——

Yy ==

s
where y is the magnetic permeability and o is the electrical conductivity.
In general, it iz difficul{ to0 achieve in the laboratory a sufficiently large magnetic
Reynolds number {(even to reach unity) to study turbulent phenomena in a regime where
the electromagnetic effects on turhulence would be significant. For the known liquid

v
metals (mercury, sodium and potassium) the ratio of viscosities is high 2 > 10%
v
In high temperature plasmas this ratio can be much more favorable but the unsteady

nature of all known plasma experiments prevented so far drawing any quantitative
conclusion about turbulence. Nevertheless, plasma experiments have been performed
that at least suggest the presence of turbulence. When a plasma column is compressed
rapidly by a magnetic field at some stage it ceases to behave according to the theoretical
(laminar type) prediction and exhibits strong, unsteady disturbances that appear as
more or less random fluctuations. These have been termed as instability, flutter, or
turbulence according to the temperament (and vocabulary) of the different experimenters.

PYREX
TUBE

CONDENSER BANK

Froune 1
“ Pinch " tube experiment.

One such experiment has been devised explicitly for turbulence studies and is shown
in Fig. 1. A condenser bank (typically 5060-1500 Joule stored energy) is discharged through
a switch into a pyrex tube (typically 10 cm diameter and 50 cm length), In order to
minimize the inductance of the configuration, the return current is conducted back
coaxially (in the photograph shown in Fig. 3e, b, ¢, eight metal straps were used instead
of a cylinder in order to give unobstructied view of the random pattern at least between
the straps). The working fluid was hydrogen (or deuterium) gas at a “ eold pressure ” of
50-500 pHg before the discharge. The electric discharge (the current was of the order
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Fireure 2
Kerr-cell shutter photography of plasma eeluman.

of 100,000-150, 000 Amp) produced a plasma column and the induced azimuthal
magnetic field (Be) caused a violent pinch effect and a eylindrical shock wave rushed
radially inward. After attaining a minimum diameter (about 1/10 of the tube diameter)
the column rebounds again, but then it appears randomly disturbed : it may be termed
as turbulent, _ . -

Kerr-cell photographs with an exposure time of 5 X 10—8 sec were made with different
time delays showing the phenomenon in different phases of development. In order to
obtain a three-dimensional view of the discharge, two more images were taken by using
two first surface mirrors (the disposition is given in Fig. 2) and the results are shown
in Fige. 8g, b, c. The three photographs give the general development of the plasma
column at three different stages, the instant being 3.4, 4.0, and 4.4 microsecond after the
discharge was initiated. A larger scale random pattern is clearly visible, It is also
evident that the pattern is not periodic as predicted by the conventional instability
theories. Tt is quite possible, however, that turbulence was created at the strongest pinch
condition when the plasma had maximum density and the intensity of the magnetic field
was also the highest, In the later development when the plasma expanded and cooled off
again the only visible effect was that the random patterns of total luminosity seemed
to have increased in scale *. Magnetic probes have been used successfully to record random
flgctuations in the magnetie field when the plasma column appeared “ turbulent ”.

* The experiments were performed in collaboration with Dr. E.B. Tuaser at Aerospace Corp.,
Los Angeles, California and author is grateful for permission to include these preliminary
experimental results. ¥
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# The theoretical problem of turbulence in 'a conductive flnid can be regarded as
follows. There are two “ energy-bearing” vector fields, the velocity field and the
magnetic field. Their governing equations are somewhat similar but not identical and
there is coupling between the two systems. The momentum equation governs u and it
also contains the LorenTz force term -

IXB=p(VXH)XH {for w = const) - (8)
that is clearly nonlinear (quadratic) in the magnetic field vector H. The equation
governing the magnelic field on the other hand, contains the velocity u but that occurs
only linearly , '

oH
E“I‘“VX(HX“):VMVEH _ 9)

If this equation is solved formally
where L(u) is a linear function of the velocity field and H, is a solution of the

corresponding homogeneous equation, then by substituting in eq. (8) we see that the
LorenTz foree becomes a quadratic function of the velecity field
‘ I X B=Q(u)

By eliminating H from the momentum equation in this manner, the nonlinearity
oceurring is then of the same quadratic type as in the inertia term, so it may be conjec-
tured that the modifying effect of the presence of conductivity will nol change the
general character of the turbulent velocity field. Work on isotropic turbulence, mainly
by CHANLRASERHAR (1955) bears out this contention. On the other hand, if one iz able
to neglect entirely the Lorextz force in the momentum equation, the turbulent velocity
field remains unaffected and the magnetic field can be regarded as a “vector-passive
contaminant 7. The treatment then will follow closely earlier theories developed for a

“ gealar-passive-contaminant ”. More details will be given on these considerations today
by MOBPATT.

If the turbulent fields are such that the mean velocity gradients as well as the
mean magnetic fields (or electric currents) control the phenomenon then, of course,
jsotropic turbulence is out of the question. Without actually solving the vector equations,
the turbulent energy equation REyworvs eguation) can be developed with the inclusion
of electro-magnetic effects. The energy equation may be written either separately for
“kinetic ” and for * magnetic ” turbulent energy -or in a combined form for the total
turbulent energy (KovAszway, 1960). Besides the familiar terms of the turbulent energy
cquations (generation by mean flow gradients, diffusion by pressure, turbulent diffusion,
viscous dissipation) new coupling terms also appear, such as J«(3u X &B), the energy
itransfer - from the mcan electric current into the «mechanical» turbulence; or
B - (5u X &), the transfer from « mechanical » to « magnetic » turbulence by « scramb-
ling » the mean magnetic field by the turbulent motion. A new dissipation term, s8JZ,
algo appears; it is the dissipation of magnetie turbulence by JouLe heat. Turbulent
motion of a plasma with ro mean flow velocity can be maintained, at least in principle,
by feeding energy into the fluctuations by a large D.C, electric current and thus en
apparent turbulent electrical resistivity (analogous {o the turbulent effect viscosity) is
measured in the external electric circuit. There are some experimental: suggestions that
such a state of affairs may actually exist. ‘

-
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Fig. 3a. — Plasma celumn (3 views). Cold gas pressure 300u Hg, working fluid H,, exposure 1/20p sec..
delay 3. Bp. sec (Courtesy of Dr. E.B. Turner, Aercspace Corp., Los Angeles, California),

Fig. 3b. — Ag Fig. 3a, except delay 4. 0;4 sea,

Figr, 3. — As fig. 3 a, except delay 4. 4 sec.
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As far as the future is concerned, the next more important gtep in the development
of our understanding of magneto-finid-dynamic turbulence will be fo devise a clear,
gimple and meaningful experiment, not as much to confirm existing theories as to obtain
educated guesses about relative importance of the different approaches.

Tn the rest of the program, first Dr. M. V. Morgovix will give an account of available
experimental evidence on the turbulence found in a supersonic boundary layer. Then
Dr. J. Lavrer will discuss the sound generation by turbulent shear flows. He will
report experimental data obtained in the free stream outside of the supersonic turbulent
boundary layer and he will present it againsi the theoretical background of several
existing theories. Finally, Dr. H. K. Morvarr will give a theoretical expose of magneto-
fluid dynamie turbulence with special attention to the problem where the magnetic field
is regarded as « vector-passive-contaminant ». ' '
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DISCUSSION DE LA COMMUNICATION DU Prof. KOVASZNAY

Secrétaire scientifique : Dr. W. H. REID

Dr. R. BercHov pointed out that, using the same apparatus, the fluctuations of the
magnetic field have been recorded. They look turbulent and amount to about 3 % of the
mean magnetic field with time scales of about 10—7 sec. Correlations and spectra will be
measured. Finally, the turbulence depends strongly upon the rcturn path of the eleetric
discharge.

Sir Geoffrey TavroRr called attention to the work of Professor BLACKETT who has found
that the instability of a pinch could be correlated with the results obtained from the stability
analysis for accelerated interfaces. ‘

Dr. G. K. BATCHELOR remarked that until a statistically steady state is reached, it would
be premature to identify this phenomenon with turbulence. In reply, Professor KovASZNAY
added that the present experimental conditions prelude the achievement of a statistically
steady state. A pinch had been used largely for historical reasons but it did not provide
the best experimental conditions; other experiments were now being planned which would
overcome this diffienlty.
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SOMMAIRE

Les questions sont centrées sur le caractére et le degré de modification dans la strue-
ture des champs de vilesse sans divergence (turbulence) entrainée par le couplage des
modes acoustique et thermique (entropique).

Le couplage a leu essentiellement par les variations dans I'espace et dans le temps de
la densité, ¢ (T, p), de la viscosité . (T) et de la conductivité thermique k (T), et dépend pour
cela des différences de fempératures moyennes AT, et nombre de Mach moyen, AM, main-
tenues dans ou & travers un champ d'écoulement donné.

Pour de petites valeurs de AT et AM, Cuu et Kovaszxay (1958) analysérent systémati-
quement l'interaction enire les modes (d'ordre de grandeur comparable) au second ordre
en amplitudes, et identifiérent les processus physiques correspondants, Avec des restrictions
plus sévéres, Movar (1951) étudia Paspect spectral des interactions dans des champs homo-
geénes. L'idée des modes fournit une base ferme pour les éiudes expérimentales des écoule-
ments supersoniques non stationnaires, 4 1'aide d’anémométres 4 fils chauds (Kovasznay,
1953). Une extension des procédés aux domaines subsoniques révéla les effets substantiels
de la compressibilité sur les techniques de mesure 4 des nombres de Mach relativement
faibles (Morkovin, 1956).

La plupart des études sur les écoulements cisaillés turbulents compressibles {(oit des
effets importants pourraient étre produits par de grandes valeurs de AM ou AT et on Ia
dissipation visqueuse ne peut éire négligée) ont été motivées par Pintérét technologique des
parameétres importants de froltement aux parois, et de transfert de chaleur.

Sans clarifier les bases physiques, les diverses généralisations formelles des approxi-
mations de Pranorr, Von Karman, BoussiNesQ, REYNOLDS, etc., ont conduit 4 des résultats
largement différents (voir par exemple Fig. B 12b d¢ SCHUBAUER et TCHEN, 1959, ou une
discussion étendue et Is bibliographie de 1956 sont encore présentées).

Les vagues notions sousjacentes de correspondance entre les couches cisaillées com-
pressibles et incompressibles suggérérent a4 Macer (1958) de proposer une planification
définie entre ces domaines.

Une tentative de fondement de la théorie de la couche limite sur les conceptions plus
.modernes de specires et de similitade en turbulence fut réalisée par Lin et Smen (1931).
Dans un large traité, Cores (1953) concentra l'attention sur la nature asymptotique de
I' « unique idéale » couche turbulente (qui est rarement réalisée dans les expériences. &
grande vitesse, @’ott unc source réclle de comtradictions dans les mesures) et proposa une
généralisation aux couches adiabatiqnes de la loi 4 la parm Les extensions les plus raffinées
des conceptions de double similitude des couches en présence de transferts de chaleur a
haute vitesse sont probablement celles de Rorra (1959-106¢). Les concordances avec l'ex-
périence qu’il obtient ainsi que d’'autres auteurs, sont entravées par les désaccords et les
erreurs probables dans des mesures difficiles (sartout celles des températures d’arrét au
voisinage des parms)

Dans an mémoire terminé une semaine avant le Colloque, Cores. (1961) presente an

24
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aper¢u substantiel et rationnel de la correspondance compressible-incompressible. Pen de
* traités publiés peuvent supporter les nouveaux critéres de concordance entre les points de
vues theorique et empirique. En fait, la généralisation antérieure (1953) de la loi des parois
de CoLEs est remplacée. ‘ B
Du fait de leur complexité (prohibitive dans les régions subsoniques des écoulements
supersoniques) les mesures des caractéristiques des fluctuations dans la couche limite (e,
o3, o’ ) ont été enireprises seulement pour des conditions adiabatiques 4 la paroi, (Kovaszynay
en 1953, MoRrEOVIN en 1955-1956); (comprenant les spectres partiels, et la diffraction du
mode acoustique); KisTLER (1959) (comprenant le nombre de Mach le plus élevé de 4,67);
MogEOVIN et PHINNEY (1958) (comprenant des mesures limitées des corrélations Zv* et o'7).
Une interprétation critique de I'information (Momkovin, 1960) a donné une base plus
solide & la « similitude ». Méme en présence de la dissipation, le mouvement 4 plus grande
échelle serait couplé statistiquement au domaine thermique, presque exclusivement par I'in-
termédiaire des valeurs moyenne g, u, k et Ia loi 4 la paroi généralisée de sorte que, avec un
facteur d’élargissement latéral variable, il puisse ressembler an mouvement incompressible,
Lorsque Ia vitesse des plus grands tourbillons du courant libre devient sonique et supersoni-
que & des nombres de Mach supérieurs 4 4 ou 5, une telle similitude peut produire des
déviations croissantes. Les traits saillants du tablean qui se dégage des counches limites
turbulentes non hypersoniques sera alors présenté. o

- SUMMARY

The questions center on -the character and degree of change in the structure of diver-
gence-free velocity fields {(turbulence) brought about by coupling with sound and thermal
(entropy) fields (modes). The coupling occurs primarily through spatial and timewise
variation of density ¢ (T, p), viscosity w(T), and heat conductivity %(T), and depends
therefore on the “ driving ¥ differences in mean temperature, AT, and mean Mach number,
AM, maintained within or_across a given flow field.

For small AM and AT, Cav and Kovasznay (1958) analyzed systematically the inter-
actions between the modes (of “ comparable magnitudes ™) to second order in amplitudes
and identified the corresponding physical processes. Under more severe restrictions, MovaL
(1951) 'studied the spectral aspects of the interactions in homogeneous fields, The concept
of modes provided a firm basis for experimental studies of unsteady supersonic flows with
hot-wire anemometers (Kovasznay, 1953). An extension of the procedures to subsonic fields
disclosed substantial compressibility effects on the measuring techniques at relatively low
Mach nambers (MoRKOVIN, .1956). :

Most studies of compressible turbulent shear flows (where large effects could be indnced

by large AM or AT and where viscous dissipation caanot he neglected) have heen motivated
by technological interest in the gross parameters of wall friction and heat-{ransfer rate.
Without clarifying the physical basis, the various formal generalizations of the approaches
of Praxpre, Von KarmaN, Boussivesq, REynerps, etc., have led to widely different results
(see, for instance, Fig. B12p of Scmusaver and Towew, 1959), where a comprehensive dis-
cussiont and the bibilography through 1956 are also found)., The underlying vague notions
of correspondence between fhe compressible and incompressible shear layers prompted
Macer (1958) to propose a definite “ mapping ”. between the fields:
_ An attempt to base the boundary layer theory on the more modern spectral and
similarity concepis of turbulence was made by Lix and SHeN (1951). In a comprehensive
treatment, Cores (1953) focused aitention on the asymptotic nature of the * unique ideal »
turbulent layer (which is seldom achieved in high-speed experiments, hence a real source
for {iscrepancies in measurements) and proposed a generalization of the law of the wall-to-
adiabatic Iayers. The most fefined extensions of the double-layer similarity_concepts in the
presenee of high-speed heat transfer probably are those of Rorra (1959, 1960), His and other
authors’ correlations with experiments are hampered by discrepancies and probable errors
in difficult measurements (especially those of stagnation {emperature near walls). In a
memoir completed a week before the Colloguinm, CoLEs (1961) presents a consistent and
rational view of the incompressible-compressible correspondence. Few of the published
treatments can pass the mew criteria of theoretico-empirical consistency. In faet, CoLES’
own earlier (1953) generalization of the law of the wall is replaced.
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Due to their complexity (proh:bltwc in subsonic regions of 8 _’_]:_rersomc flows), measor-
ements of fluctuating boundary-layer characteristics (0202, and »'2") have been carried out
only for adiabatic wall conditions (Kovasznay (1953): Mummvm (1955), (1956) (including
partial spectra and sound mode diffraction); KistLen (1959) (mclu(i_x’tig_ the highest Mach
number of 4.67); Morxovin and PHinNeY (19568) (including limited @'’ and ¢’ v’ correla-
tions))}. ‘

A critieal mterpretatmn of the information (Morkovin, 1860) provided a firmer basis for
“ similarity ”. Even in presence of dissipation, the larger-scale motion should be statistically
coupled to the thermal field almost exclusively through mean values of T, P k, and the
generalized Iaw of the wall so that with a variable lateral siretching factor, it may resemble
the mcompressmle mofion. As the speed of the larger eddies relative to the free stream
becomes sonic and supersonic at Mach numbers above 4 or 5, increasing departires from
such similarity may occur. The salient features of the emerging picture of the nonhypersomc
turbulent houndary layers will now be presented.

Passivity of Compressible Turbulence

Compressibility etfects could be expected in presence of large relative velocities of
neighboring fluid lumps, of rapid variation in the density p, and of consequent dynamic
coupling between «modes ». However, making the fluid compressible does not appear
to add any substantial sources of vorticity; in particular, the Bjerkness mechanism
mentioned by Dr. Kovasznay, appears to be weak. A compressible turbulent system then
remains essentially passive aud large relative velocities disappear in absence of frequent
or steady inputs. In fact, even in boundary layers and mixing regions where a steady
input is present, we do not obhserve local rms fluctuating Mach numbers above 0.15 ~ 0.2
for free stream Mach numbers, M., up to & :

Dominance of Large-Scale Structure

In order to appreciate the manner in which rapid density variations may effect the
dynamics of boundary layers, consider the typieal spectra in Fig. 1. Thege were taken

at % = 0.2, jn a turbulent boundary layer with thickness 3 == 0.6 inch and M, = 1.77.

The arrow indicates the frequency which would correspond to eddies of size 2 trans-
ported at the speed of 0.8 U, (referred to as magic by previous speakers). Clearly, the
dynamies of supersonic boundary layers are governed by large-scale eddies, as at low
speeds. To cmphasize this aspect, the low-speed spectral shape of velocity fluctuations

‘ 1 o
of Krepanorr-Dienmn (1952), taken at the same’-‘;—, was transformed to the present

frequencies by assuming integral 'scales‘ L, =027inch = 0.453 and Ly, = 0.15 inch

= 0.25 ¢. These lengths are to be compared with the low-speed value of 0.4 3. .
The shadowgraph shown yesterday by Dr. Rorra displayed this large-scale gtrue-

ture optically. Incidentally, both the optical and hot-wire observations at supersonic

speeds exhibit the intermittaney phenomcna at the free-stream edge, which were empha-
sized yesterday by Dr. Liepmany i in low-speed flows.

While no spectra of Aulv and ATAv have been obtained, there is little dﬁubt that
the momentum and heat transfer mechanisms are also dominated by the largescale
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Spectra of vorticity and density (entropy)
Fluctuations at y/5§=0.2, U, =15,600 in./see, M, = 1.77.

-eddies, as'at low speeds. At large Reynolds numbers, the seales at which the peculiarly
compressible coupling between the velocity field and the thermal field manifests itself,
i.e, the scales at which dissipation converts kinetic energy into degraded thermal
energy, are thus far removed from the scales at which the essential dynamics of the
boundary layer evolve. In the outer layers, we need not seek therefore any direct coupling
between Au? and AT, which is especially troublesome in the specfral representation.
Rather, we can foeus our attention on the mechanical energy of the large-scale velocity
field and view it as an open system receiving energy from the mean flow and losing
energy at the rate — p AuAv %3 (a8 will be shown) without need for specification of the

small-scale structure * and interactions.

* Frequency requirements are likely to prevent -accurate experimental studies of this small-
scale strncture anyway. . C



Limited Vorticity-Entropy Coupling in Supersonic Boundary Layers

Thus, we are led to the schematic view of the coupling between the vorticity and
entropy modes in a turbulent boundary layer represented in Fig. 2. The paddle wheels
emphagize that the turbulent thermal exchanges are driven by the velocity field as
at low speeds. The fine structure is outside of these systems receiving the energy

- U ‘ _
— ¢ AuAv—%— and converting it into degraded {hermal energy through the action of

i and k. This constitutes a « compressible » feedback mechanism which is unlikely to
affect the essential dynamics of the boundary layer but rather modulates them through
(stratified) mean values of 5(y) and T(y). In any experimental comparison between
low-speed and supersonic measurements and in corresponding theoretical « mappings »,
an appropriate lateral scaling is therefore in order, In the wall layer the Dorodnitsyn-
Howarth scaling appears indicated, but the experimental and theoretical evidence for
its usage in the outer layer is not conclusive (Rorra, 1960; Spence, 1960; Cores, 1961)

We note that in contrast to the low-speed case, heat transfer at the wall also
modulates the boundary-layer processes by changing the mean values of p and T (see
Fig. 2, conduction role). Thus, yet another parameter arises for the specification of the
‘ compressible meahn velocity field.
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f
SCALES SET _ LARGE SCALE INVISCID _ENERGY
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Fiaure 2
Mean flow features.
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L " Dissipation and Low-Reynolds Number Effects

As at low speeds, most of the dissipation occurs in the wall layer, Howéver, at high
speeds, this rather localized heat source has a most important congequence : the local

values of —_—_P- and therefore the local Reynolds number, Rey, fall rapidly with increase
m 4 : :
in speed. For example, the ratio of Re, at the free-stream Mach number of 5 to the low-

‘ 1
speed Re, at the same small value of %I— is on the order of P for an insulated wall when

the Reynolds numbers of the two layers based on freestream conditions and ¥ are the
same. The low-Reynolds number behavior at the wall encroaches increasingly upon the
main body of the boundary layer with increasing M., and may well cause a departure
from the normal -asymptotic two-layer behavior, {Speculations about M, -, wonld
undoubtedly require R. ->w0, or infinite cooling at the wall; at any rate, the results
would depend upor the specific limiting process.)

T(.v)—_

v/ ’ i.0

The heai sources in the wall layer grow with M,, and easily « overpower » effects
of cooling at the wall, leading to static temperature profiles with a sharp maximum as
in Sketch 1. A measure of both the sharpmess of the gradients near the wall as well
as of the experimental difficulties, can be found in the fact that no successful measure-
ments of the actual maximum near a cold wall have been reported to date. The prospects
of measuring fluctuating quantities in this neighborhood are almost nil,

For the sake of completeness, Fig, 2 also displays the energy loss through radiated
sound, which ig small in nonhypersonic boundary layer as Dr, Lavrer will andoubtedly
tell us later, I
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Reynolds Mechanism in Compressible Flows

The schematic view of Fig, 2 is also supported by a consistent representation of the
mean turbulent compressible flow-field as a Reynolds fluid with stresses —op AuAv

U
mechanical energy Joss — o Audv %, total enthalpy transfer —p AHAw, ete., as will
y

now be shown. In order to separate the various transport properties from spurious

contributions due to mass transport, we comsider transport accross mean streamlines,

i. e, with zero mass transport*. The mean streamlines in a compressible flow have the
direction (in the A and in the alternate condensed notation). '

. - Far

tan § = — o + Sedv = _PUz +.E..%f_2 1)

eU 4 ApAu pUL + p'an o

The two terms in the numerator are of the same order in many flows, while the second-

term in the denominator is of second order with respect to the first and can be neglected;

the overall approximation of 1 compressible Reynolds fluid being no better than second

order (e. g in the mean equation of state of the gas). The material derivative along the

‘ _ : D
mean streamline will be denoted as p o7 in the condensed summation notation

T

U / °. D 2)
(U + pu;) —— 50, =¢7; ‘ {

The averaged comprehmble Navier-Stokes equations then yield the Reynolds momen-
tum equations in the form : ,
p])thz__“.a;‘w;r 0 (35 —p tath) (3)
Dt oT; aw,-
In this formulation, the turbulent stress tensor — p #u; takes the same form as for
incompressible flows, playing the same role as the laminar stress Ty

In order to check the consistency of the equation for the kinetic energy of the mean
flow, we must first inquire as to its proper form and meaning for viscous compressible
flows in general. Taking a scalar product of the (unaveraged) velocity @l. with the
Navier-Stokes equations, we obtain, after some rearranging :

a‘u.c
] (4)

2 p D‘uu‘ll,s
o7 — (- ‘u-%paij"l'%i";ﬁ) +{ ot

The left side represents the mstantaneous rate of the total mechanical Work being done
on an element of fluid as it moves along is path. For incompressible fluids, this input
is either converted into mechanical energy of motion or lost to the mechanical system
through the dissipation term in braces, usually designated as &. The additional term
in the bracket represents the rate of change of the mechanically recoverable internal
energy of the gas generated by compression-expansion alopg the path:

* The mean continuity requationvis then automatically satisfied, and in the form

D /1 U,
p——{— =
Dt \ p o,

exhibits only the mean compressibility effects,
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To obtain the mechanical energy equation of the mean motion for turbulent
compressible flows, we proceed similarly by taking the scalar product of U; with the
Reynolds equations and rearranging terms as in (4)

a . — — P DU{,U{ P —— aU::, " aU,

err— _—U 3 T i'"—U s QS 15— — — T e

52, { s 9+ U vy 1P Ua Uy) > ot “I‘{(": # Ug Uy) B-Wj}_i—[ P 2,
(®)

The interpretation of Eq. (5) is analogous to that of Eq. (4) : the net rate of work done on
a fiuid element by mean motion is converted into the change of its mean kinetic energy

. < e . . ——— 29U
along its mean path, lost through dissipation and turbulence production — p gt g :

_ &y
and partially stored as internal energy of the element. Thus, the representation of the
mean compressible turbulent flows by means of additional turbulent stresses — p Uy,
acting on fluid elements along mean streamlines, is seen to be consistent when both the
momentum and mechanical energy are considered.

‘When the combined mechanical and thermal energies of a fluid element are observed*
along the mean streamline, a minor modification of Yourg'’s analysis (1951) leads {o a
U.U; Uty

+ 9

=

consistent view in terms of stagnation or total enthalpy H, H =% +

= C,T, (for perfect gas) as well. The energy equation becomes

DH o [% ?2H -— - 1\ 2 /UU  wmw
P—nr""éz:["é: am,-_”’HJ”"(l_E)am;_( 5 T3 )] ©

and shows that the turbulent energy-transfer vector, — g w;H’, has also the same
structure as at low speeds.

While we have Eqs (3) and (6) before us, we note with A.D. Youne (1951), that
when the pressure gradient term in Eq. (3) and the laminar & term* in Eq. (6) can be
neglected, the equations admit the solution '

O~ CyTrg = P~ (M
T

CAT, (1) =P, -2 Au(t) (8)
T

" where ., the heat-transfer rate at the wall, enters through the boundary conditions.
- This solution, henceforth called the Strong Reynolds Analogy (8. R. A.), will be discussed
later. '

Turbulent Energy in Compressible Boundary Layers

Fron'x the preceding discussion we would expect that _dimensionless shear stress
—, . Aulv ' i o Au? o(y)  Awl
e (¥) and energy of longitudinal fluctuations 7 (y) —= Pp_y -U2 “would
' T Tw 20 T

. * In ths case the losses, @ — pu., U,/dz, in the mechanical energy are converted into a
gain in thermal energy so that these terms disappear from Eq. (5). The gquestion of how locally
and rapidly this conversion may occur is connected with the question of existenece of an energy
(Crocco) integral.
* Such as when Pr=1 or when turbulent processes dominate,
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Profiles of dimensionless Jocal veloecity fluctuations.

depend little on Mach number, if an appropriate lateral scaling and the influence of
the low Reynolds numbers at the wall are taken into account. (Here T,, is the mean shear

at the wall, and U=

T
2, as usual). Very limited measurements of the above shear

w .
stress indieate agreementpwith_ low speed within 15 to 25 %. The longitudinal velocity flne-
tuations, displayed in Fig. 3, appear to scale best with the ratio of the undistorted lateral
length ¥ to the boundary layer thickness 8. Laufer's « incompressible » measurements
in pipes (LAvFER, 1955) with a ratioc of Reynolds numbers of 0.1 indicate the probable

effect of low wall Reynolds pumber on fluctuations plotted against +ay—- The gradnal
K
decrease in the dimensionless fluctuations with increase in Mach number, i.e, with

decrease in wall Reynolds number under the present adiabatic conditions, reflects the
same trend but may also be infiuenced by a systematic effect of the decreaging Reynolds
pumber on the measuring instrument. Since high-speed measurements are very difficult®,
the agreement with the overall picture is indeed gratifying.

* For example, there is little doubt that in the outer one-third of the boundary layer, the
Morkowin-Phinney measurements are inferior to those of Kistler who had considerably less
background noise. .

%
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Ag already mentioned, the experimental difficulties will undoubtedly preclude any
substantial clarification of the decay and transfer of the above turbulent energy, Yet,
the thermodynamic mean emergy equation [Eq, (6)] does contain information on the
combined effects of energy production, dissipation, diffusion and gradient transfer. Fop
adiabatic wall conditions, the corresponding experimental results, such as that of Fig, 4,
show that the stagnation or total temperature, T, is remarkably constant in regions
of high Reynolds number. In general, approximately half of the drop of T, to the wall

: Tw
recovery temperature occurs inside the wall layer py \ / -_%"L % 60, even through the slope
o : P

T _
(Pa—‘) is zero at an adiabatic wall. A temperature deficiency at the wall would
Y Jw R :

be expected for gases with Prandtl number less than unity in regions where laminar
transport is important.

o .
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Ficugre 4

Variation' of mean total temperature, T,, AT M, == 1.77.
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Thermal Energy and Temperature Fluctuations

Asgociated with the behavior just described are a number of questions which have
not been fully explored and understood, e.g., the empirical constancy of the recovery
factor with Mach number, the exigtence and the form of a Crocco energy equation, the
proper generalization of the law of the wall, the Reynolds analogy at the wall (especially
in presence of roughness or pressure gradients), etc. As a matter of fact, once we have
glimpsed the reagsuring picture that the essential mechanisms of the nonhypersonie
turbulent boundary layers differ little from those at low Mach numbers, the interesting
features which can teach us something new about turbulent fields are those dealing with
the relationship between the temperature and velocity fluctvations, For instance, as a
companion to Fig. 1, the measured correlation coefficient

- AT

ATAu . T(y) , . o

o = W’ and the ratio p :_——Twm are digplayed as functions of frequency_
Ty

in Fig. 5. The temperature and horizontal velocity fluctuations of the large eddies are

Lir Or

.~ S

L

FREQUENCY X 1073 ¢ps

Ficure b ]
Relations between vorticity and density (entropy) fluctuations '
Across the spectrom : Y=1012 in, M) =135, M,= 177,

highly anticorrelated « as if a lump of fluid which is warmer than the average came from
a layer closer to the wall, with a velocity less than the average » [Kovaszway (1953)]. In
fact, for adiabatic flows (7, = 0), the Strong Reynolds Analogy [Eq. (8)] leads to

and its linearized version to _ o
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Ot
AT, (1) = AT (t) + @ Ay (6)=0; (10a)
AT ’
d Ty .\
S=—g =G M) ; (100)
Uly)
Ry, — A% _ .. | 10
= ATRe T 1)
AT T ‘ ’ ]
AT _,Tw A (10d)
Tsw'—'Tg ) Us Tje
AvAu 3T(y)
turh — E———— == 10
Bron = T 50() (10¢)

‘ 4
The experimental value of 0.6 for = of the largest eddies as against 0.7 of Eq. (10b)

and the less-than-perfect anticorrelation Re- in Fig. 5, represent a measure of the
departure from S.R.A. for the large-scale motion. As could be expected, the anti-

. 4
correlation decreases as eddies become smaller, The explanation for the rise of =

with frequency probably lies in the difference in behavior between scalar and vector
fields. It would be interesting to obtain similar information in terms of eddy structure
for rough-wall conditions, for which the variations in the Reynolds analogy at the wall
hint at an effective turbulent Prandtl number larger than unity.

The experimental evidence relative to conclusions (9) and (10) is as follows.

The correlation coefficient Ror, [Eq. (10c)], varies little with M, or y for a given M,
and for a given instrument, and ranges * from — 0.7 (especially for Platinum-Rhodinm
hot wires without sleeves at supports) to — 0.9 (especially for Tungsten hot wires with
protective sleeves at supports).

' The relations (105) and (10d) are verified within 20 % or less.

. Limited measurements of turbulent Pr, [Eq. (10¢)], yvielded results between 0.9
and 9.93. _

. However, ihe key consequence of 8. R. A. in adiabatic flows, Eq. (9), was not born
out, as.can well be seen from Fig. 6 **. This undoubtedly stems from the unrealistic
demand that the outer-flow solution, Eqs (7) and (8), appropriate at high Reynolds
numbers, extend all the way to the wall. Apparently, a midler form of 8. R. A, resting
on the negligibility of the dimensionless lateral transport of the total temperature in
A‘UAT;

, may be sufficient to bring about
T

the outer layers of adiabatic boundary layers

* These discrepancies are a measure of the experimental uncertainty with the rather diffienlt
technigme, Since the wires have different sensitivities to temperature and velocity fluctuations, the
relative smallness of the discrepancies would appear to validate the technique.

** Only the extreme measurements, as noted above, were selected from the Morkovin-Phinney
set. There were many more measurements, generally in between the values shown here. :
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the rather satisfactory agreement with the practically useful results of Eqs (10b) through
(10e). Limited measurements gave values of 0.06 and less for this ratio. :

In conelusion, the dimensionless fluctuation profiles of Figs 3 and 6 provide a basis
for general assessments of fluctuation levels in adiabatic compressible boundary layers,
consistent with the idea of the M-independence of the basic mechanisms. One counld
recommend careful coupled fluctuation and mean-flow measurements in supergonie
turbulent boundary layers with heat transfer and/or roughness, and in supersonic mixing
regions. These experiments are feasible with our present techniques, and should throw
light on the more interesting questions just lisfed (some of which can also be studied
more accurately at low speeds). However, we ean expect with confidence that the
essential dynamies of these supersonic shear flows will follow the incompressible pattern.
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SOUND RADIATION FROM A TURBULENT BOUNDARY LAYER

John LAUFER

Jet Propulsion Laboratory
California Institute of Technelogy, Pasadepa, California

SOMMAIRE

_ Si Ia restriction d’incompressibilité dans le probléme de la turbulence est levée, le
phénonixéne de radiation d'énergie sous la forme sonore provenant de la zone turbulente
apparaft, : . _ : ﬁ

Pour calculer cette énergie rayonnée, il est montré que de nouvelles grandeurs statisti-
ques, comme les tenseurs de corrélations spatio-temporelles, doivent éire connues dans la
zone turhulente, en plus des grandeurs conventionnelles. Pour le cas particulier de la couche
limite turbulente, il y a des indications montrant que Pintensité du rayonnement ne devient
notable qu'en écoulements supersoniques. Sous cette condition, le récent travail de PHILLIPS
est examiné en méme temps que quelques résullats expérimentaux de Pauteur. Il est montré
que I'aspect qualitatif du champ rayonné (intensité, directivité) comme prévu par la théorie
sont compatibles avec les expériences; cependant, méme pour les nombres de Mach les plus
€levés, quelques-unes des hypothéses de la théorie asymptotique ne sont pas encore satisfaites
dans les expériences. '

Finalement la question de la réduction de la turbulence dfie au rayonnement est dis-
cutée, avec ce résultat que dans le domaine des nombres de Mach couvert par les expé-
riences, la perte d’énergie de la couche limite dile au rayonnement est un faible pourcentage
du Iravail accompli par les froftements & la paroi.

SUMMARY

If the restriction of incompressibility in the turbulence problem.is relaxed, the pheno-
menon of energy radiation in the form of sound from the turbulent zone arises. In order to
calculate this radiated energy, it is shown that new statistical quantities, such as time-space
correlation tensors, have to be known within the turbulent zone in addition to the conven-
tional quantities. For the particular case of the turbulent boundary layer, indications are
that the intensity of radiation becomes significant only in supersonic flows. Under these
conditions, the recent work of PrivLips is examined together with some experimental findings
of the author. It is shown that the qualitative features of the radiation field (intensity,
directionality) as predicted by the theory are consistent with the measurements: however,
even for the highest Mach number flow, some of the assumptions of the asymptotic theory
are not yet satisfied in the experiments. Finally, the question of turbulence damping due
to radiation is diseussed, with the result that in the Mach number range covered by the
experiments, the energy lost from the boundary layer due to radiation is a small percentage
of the work done by the wall shearing stresses.
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Introduction

‘When the compressibility of the fluid is taken aecount, a new aspect of the turbu-
lence problem will arise. In a compressible fiuid a disturbance from 2 source will propa-
gate at a finite speed and will influence the flow field over « finite distance in o given
time. This means that in caleulating the flow properties at a given point and time, it will
now be mecessary to know the behavior of the disturbance source at a certain earlier
time, Thus, the concept of retarded time and retarded potential naturally arises. This
fact is reflected in the statistical description of a fluctuating flow field; in order to
caleulate, for ingtance, the pressure fluctuations emanating from a turbulent shear field,
it will now be neccessary to know certain space-time correlation funetions within the
shear field heretofore not considered.

In order to fix our ideas, we will choose a definite geometry for a turbulent shear
flow : the boundary layer. Thus, we have & turbulent fluid streaming over a rigid wall
and want to examine the time-dependent pressure field outside of the layer. Within the
layer the fluctuations may be desecribed primarily in terms of vorticity and entropy
modes and, t0 2 lesser extent, sound modes. Qutside the layer the first two modes die
out rapidly, so that at a sufficiently large distance from the shear. zone (geveral wave-
lengths away) one expects to find only fluctuations of the sound mode type present,
nsually referred to in the liferature as aerodynamic noise. We will seek a relation
between thig sound field ard the fluctuations within the boundary layer,

The mathematical tools to handle the radiation have been well developed in the
electromagnetic, acoustic and nonstationary supersonic theory. Thus, once the aero-
dynamic noise problem has been properly formulated and linearized — and this can be
done with reasonable assumptions — in prineciple, at least, a solution can be obtained.
The main difficulty and the reason for the rather slow progress in thie field is the fact
that the solution is written in terms of the aforementioned statistical quantities of the
turbulence field about which very little if any information is available.

_ It is interesting to note that one new feature in a compressible turbulence is the
fact that the pressure energy radiated away from the turbulent zone represents a new
form of energy loss besides the digsipation. The question naturally arises as to whether
_or not, at sufficiently high Mach number, the radiation can be intense enough to exceed
the rate of turbulence production and thus dampen out the turbulence,

The main purpose of this paper is not to give a comprehengive literature survey on
the subject, but rather to extract those ideas that seem to be most helpful in unders-
tanding the mechanism of radiation in the case of & turbulent boundary layer. Since
recent measurements indicate that the intensity of radiation becomes significant mainly
in supersonic flow, theories that depend on the assumption M « 1 will be merely touched
upon ; the discussion will concentrate on the supersonic problem.

Formulation of the problem

Taking the divergence of the momentum equation and using the continuity equation,
one obtaius
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where 7; is the viscous stress temsor. ‘

In order to eliminate the demsity (at least from the leading terms), Phillips has
rewritten this equation in the form (Ref. 1) :
2 ' 9 _ oW Duy D 1. DS 2 1 9y
D2 log p vy ” . logp.--*rawi oy +T‘Dt (C? Dt) Y 2m o on (2
The last two terms in the equation represent entropy fluctuations and viscous effects. Tf
we restrict ourselves to small fluctiations and to regions not too far from the shear
layer, where diffusion effects are not important, these terms may be neglected.

The left-hand side of the equation hag the form of a wave equatien in which the
time derivatives have been replaced by those following the motion, and the propagation
velocity is a variable. On the right-hand side, the velocity term is usmally referred to
in the literature ss the pressure-generation term. This nomenclature, however, is
somewhat misleading and needs some clarification. The velocity fluctuation should of
course be considered as an independent variable together with the pressure, This,
unfortunately, renders the problem hopelessly complicated. One could adopt the point
of view (see, for instance, Ref. 2) that the velocity field within the shear layer is known
from measurements, and therefore the right-hand side may be congidered a known
forcing function for the wave equation. A much more satisfying approach is that of
irying, by a suitable assumption, to decouple the pressure field from the velocity field :
provided the Mach number is not very high, one way assume that the veloeity fluctuation
within the shear layer has predominantly verticity modes; that is to say, the noise field
generated by the turbulent shear layer will contribute only a megligible velocity field
within the layer. There is some experimental evidence which indicates that this assump-
tion is reasonable, While the pressure fluctuations in the far field vary an order of
magnitude in the Mach number range considered, the velocity fluctuation field in the
boundary layer (in an appropriately normalized form) does not change as was shown in
the previous paper by Morkovin; similarly the wall pressure fluctuations, measnred

is the ratio

recently by Kistler, vary only slowly with Mach number (see Tig. 1;

Tw
of rms pressure fluctuation to wall shearing stress)®.

Thus, if the velocity field within the boundary layer is known @ priori, the problem
reduces to solving a wave equation with a known source term. The mathemztical difficulty
in the solution lies mainly in the fict that the governing partial differential equation
has variable coefficients, and some suitable simplification has to be made in order to

obtain a solution. In the literature, one finds two approaches which will be discussed
below. -

a. Low Mach number solution : Lighthill succeeded in redncing the problem to thai
of classical acousties by considering flows with M « 1 (Ref. 3). Under this circumstance,

* The aunthor wishes to express his thanks to Professor KisTLer for permission to nse. these
resnlts before pnblication. ‘

25
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Wall pressure fluctuation level.

we can replace the density in the generation term (Eq. 1) by a constant value and neglect
a term of the form : '

1 2*eap—p) 1 (ad ) 2
. @ ' T &} \a* ] o
under the assumptions that the temperature of the flow field is nearly uniform and the

fluctnations are locally isentropic (@ is the local mean speed of sound ; subscript « refers
to free-stream conditions). With this simplification we obtain

1 o*p 2 B thy 1
. — VP =po——
Oz atz . ami -amj

The problem is thus reduced to finding the pressure fluctuations in a uniform

acoustic medium at rest produced by certain types of gources. The soluiicn for the
- case of the boundary layer was first obtained by Curle (Ref, 4} in a quadrature form in
which the integrands comtain the Reynolds stresses and pressure forces taken at
appropriately retarded times. (Other authors, Refs. 5 and 6, gave the results in somewhat
different form.) It follows that the pressure intensity p® will contain the gpace-time
correlations of these quantities. In order to obiain numerical values for 75, it is, of
course, necessary to know the correlations throughout the shear zone. For the cage of
a boundary layer of constant thickness, Phillips estimated the intensity of pressure
radiation and found it to be negligibly small (Ref, 7). Indeed, measurements of 7% in
supersonic flows indicate a very rapid decrease in intengity as the Mach number
approaches subsonic values.
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Thus it appears that for boundary layers the radiation problem becormes interesting
mainly in supersonic flows, In this case, however, the mathematical difficulties become
much larger. Lighthill’s very useful acoustical analogy will have to be reexamined. The
physical problem, of course, becomes more complicated : the sound velocity within the
layer will vary appreciably because of the large temperature gradients; the convection
velocities of the sources can no longer be neglected and can be subgonic or supersonic
with regpect to the free stream,

b. Solution for M —>co : Phillips has studied this problem nsing Egq. (2) and has
succeeded in obtaining a solution for the asymptotic case of M >« (Ref. 1). Although
ke considered a free shear layer, his theory can be easily adapted to the boundary layer,
The main results may be described as follows : the wavenumber frequency energy
spectrum of the pressure fluctuations at a point outside the boundary layer corresponding
to a given wave number % and frequency » is contributed entively by a certain critical
layer within the boundary layer that lies at a distance Y from the wall where
%+ Kk U (Y) =0 (K is the 2 component of the vector k). In other worde, one may
consider at Y a frozen eddy pattern that is convected downstream with a velocity U (Y)
which is supersonic with respect to the free stream (Fig. 2). The pattern thus moves

i
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Figune 2 _‘
Schematic diagram of the radiation mechanism.

like a wavy wall in a supersonic stream and radiates energy in the form of Mach-waves,
the direction of the waves depending on the relative vcloeity between U (Y) and the free
gtream. The resniting pressure spectrum has the form

] (75)
392

Y
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* where n = —1¥, U (Y), and ¢ _(—?, Fa: n) is the wave-number frequency spectrum of the
fluctuations in the boundary layer at Y.

Fo]lowiﬁg Phillips, if one now makes the rough approximation that ¢ (Bi’ i, m)
~ § (k) 8 (k) is independent of Y where 6(%) iz an integral time scale of the + spectrum

of the order of

, one obtains for the pressure intensity

-]
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The following comments may be made about the result :

1. The pressure field outside of the boundary Iayer is uniform independent of the
distance from the plate,

2. The variation of the radiated pressure intensgity with Mach number cannot be
expressed explicitly. The value of the integrand decreases rapidly with Mach number
(roughly as M®) so that the intensity is expected to vary much slower than M2/,

8. Within the framework of the theory, directionality of the radiation can also be
predicted. It may be shown that as the Mach numher of the free gtream is increased,
a larger portion of the total radiated energy will be concentrated in a given direction,

the direction of propagation approaching the perpendlcular to the boundary layer as
M- o, ,

Discussion

In this case, as in any type of asymptotic solution, one would like to know whether _
the results of such a solution could be applied to finite values of Mach numbers. In this
section we will examine the existing experimental information on sound radiation in
the hght of Phillips’ theory.

In a recent work (Ref. 8) it was shown that in a supersonic wind tunnel the
fluetuations in the free stream are mainly pressure or sound waves emanating from the
turbulent boundary layers of the four tunnel walls. The sound field intensity was
found to be very uniform a few wavelengths outside of the boundary layer. Figure 3
shows the normalized v fluctuations near the edge of the boundary layer for several
Mach numbers. It ig seen that in the free stream the sound field intensity (where ¢" is
proportional to p’} ig uniform indeed. Furthermore, the nonuniformity in intensity
extends farther out of the boundary layer for the low Mach number flow. This is not
surprising since, as will be seen later, the nondimensional wave length of the sound

_ a _ .
field -ae:'— %) cos § ig larger at lower Mach numbers. (8 is the angle between the

normal to the wave front and the flow direction.)
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. The directional characterictics of the field may also be investigated by measuring
the space-time correlation of the pressure fluctuations. Figure 4 shows the result of
such measurements for three Mach numbers. The two hot wires were behind each other
at a distance AX apart, indicated in the fignre; they were also displaced in the plane
perpendicular to the flow direction sufficiently that no mutual interference was
observed. It is seen that there exists a particular time delay , for which the correlation

AX
is 2 maximum; or expressing it another way : there exists a preferred veloc1ty Ug=——

it

with which the fluctuation patterns are conveeted downstream. Since the measurements
are made several wavelengths away from the layer, one can assume the sound waves
to be plane. Then the above result implies that the wave fronts have a preferred direction;
as a matter of fact, with increasing Mach number more and more of the sound energy
iz oriented in omne pariicular direction (the maxima of the correlation ecurves become

gironger).
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Fiaure 5
Energy spectrum of pressure fluctuations,

A eoﬁsistg:nt result is obtained if the spectra of the pressure fluctuation obtained at

Re A
various Mach numbers are compared (the —— of the tunnel, or approximately U, —
B m A

was held constant), Figure 5 shows that by choosing for the convection velocity the
values obtained by the correlation method, the spectra exhibit a similarity throughout
the number range. This implies that the directional characteristics of the sound waves
of all wavelengths are the same. The similarity also implies that for a given houndary
layer, the wavelengths A — 1, cos 6 decrease with increaging Mach number,



389

he I ]
0,4  WALL PRESSURE
FLUCTUATIONS
FAR FIELD PRESSURE
FLUCTUATIONS
0.8[—C I CORRELATION ' ~
o e SPECTRUM

04 /

T

0 [ 2 3 ' a - 5
: MACH NUMBER

—+ O

Ficure 6
Convection velocity ratio for pressure fluctuations,

Figure 6 shows the variation of the convected velocities with Mach number. The
upper curve corresponds to those obtained by observing the pressure flunctuations at the
wall. As pointed out earlier, these fluctuations are believed to be produced mainly by the
vorticity field within the layer, by the large-seale energy-carrying eddies. It is seen that
for low speeds the convection velocity is 0.8 U, , indeed the same as found by Favre
for the large-scale eddies from the space-time velocity correlation meagsurements (BRef. 9).
The lower curve shows the convected velocities of the sound field in the free stream.
If one identifies these with some average velocities of sources producing the sound, one
may explain the Mach number variation of these convection speeds in terms of Phillips’
picture. According to Phillips, within the boundary layer only an inner layer which
flows supersonically with respect to the free stream iz the effective sound producer. The
sonnd sources are then convected dowstream with some average velocity of this layer.

Clearly, as the free stream Mach number increases, the relatively supersonic layer
thickens, containing higher veloeity sources. ' )

From the above discussion of the theoretical and experimental results, one arrives
at the following conclusion : Phillips’ basic idea — namely, that the sound generation
mechanism consists of a moving, spacially random, virtual wavy wall formed by an
eddy pattern that is cenvected supersonically with respect to fhe free miream — is
consistent with the main features of the sound field found experimentally. Such a virtual
wall radiates a sound far-field that is homogeneous and has certain directional properties
described earlier. However, it seems that the experimental Mach numbers are not high
enough to yield the same functional behavier of the sound intensity with Mach number
as predicted by the asymptotic theory, The subsonic region (2s shown in Fig. 2) even, for
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« M — 5 extends over half of the boundury layer. This implies that the sound fluctuations
produced by the virtual wall will be attenuated in the subsonic region adjacent to this
wall as they are radiated out in the far-field, the attenuation being much higher for the
large wave numbers, This is believed to be partly the reason that the sound spectrum in
the farfield contains much less cnergy in the high- frequency region than the spectrum
of the genmerating function v’ (see dashed line in Fig. 5).

If one now adopts the over-simplified point of view that 4ll the sound is produced
in a layer near the wall, the average velocity of which is U, (the averaging is taken
spacially across the layer), oné may study the equivalent problem of the sound field
produced by a randomly wavy wall moving with a relative Mach number

U.—T, U
Mr‘: q,g' g =- +
. L L)
From the well-known potential solution, one obiains
| pr W MY
Tzfi U‘g Mf I*P(E,H;T)d&d'qdr

where ¢ (%1, t) is a space-time correlation function. (8 =&, — @2, 5=2 —1% in the

. N : . 1
plane of the layer; < is the time delay ¢; — #».) Bince M; = (1~—-—- = )Mmz , it
) o CO

is eagy to show that the above expression becomes
ﬁa Um M2

P TR sin®d :

In order.to estimate the space-time correlation, one hag to make some agsumptions

on the statistical behavior of the wall wavyness. It is reasonable that the fluctuations
are correlated only over a certain avea, say L, L, where L, and L, are integral lengths
that scale with the boundary layer thickness. Furthermore, the correlation must depend
on a time. scale corresponding to the average life time of a-* bump ”; we assume for

J4 &) dbdnds

. Thus we may write for the space-time

lack of :better information that it'cales with
correlation ’
: ) L IJ TUG )
LP(&,'O;T)—-- i 5 8n (§) 3 (1)

where 3p (5), Er,"(v;)‘ are Dirac delta functlons. FFipally, since v seales with the frietion

Gy ‘
. 5 .
velocity U = E_ﬁ:{’ we may write | |
p'2 _11:’2 C L,L, U, U, ME
¢F UL 2 # 3 U, sin?o _

This relation indicates that the pressure intengity varies with the square of the Mach
number. In Fig. 7 a comparison is made between the measured rms pressure fluctuations
P in the farfield and this relation in which we assumed

U_’é- Lm L TUGG

o b T ~ 10

~1




301

o8 - o]
: )
_%z_zikfﬂs&.&“g
o8 pvey V2 Ur BV B ujysing \ o
2
134
o2
0
0 1 2 3 4 5
Mep
FIGURE'?l

Far-field pressure flyctuations.

It is secn that the variation of the pressure fluctuations is much stronger than indicated
' : e
by the above relation. The explanation may be due to the quantity < which, aceording

to Ref. 9, varies rapidly across the boundary layei-. In the Mach number range 1.6 to a,
the thickness of the radiating layer increases rapidly, and the increase in § might

TU,
be partially due to changes in

The only conclusion we can draw from the above digcussion is that in the interesting
region of low supersonic Mach numbers there is no theory yet that describes properly the
very fast increase of radiated emergy of a boundary layer as the flow Mach number is
inereased. Additional measurements, especially that of space-time correlations of the v/
fluetuation near the wall, are necessary to further clarify the problem..

With reference to the question of turbulence damping mentioned in the Introduction,

it is possible, on the basis of the measurements deseribed, to make a rough estimate of the

energy loss due to radiation. The sound energy demsity in a moving medium may be
written (Ref. 10) '

7 v,
pa® a

where the phage velocity

- —

w'®

V,=a+ = @+ Ua cos 8 = (1 + M, cos )
or | o ‘
p* ¢a?

T

E= (1 - M, cos 8}
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The sound energy flux per unit area from the ﬁoundary layer
N= E (a -+ Um)
(14 M, eose}\/M2+1+2M o8 0

p?  pa
e
or, in a nondimensional form, .

N 2? (L-4 Mocosd)/MPE T 2M, cosb

pUL 123 M3
At M =5 the experiments give (remembering that the hot wire senges the radiation
coming from four walls of the wind tumnel) :

p’2
p2

¥ =

L= 0,6X 104 08 § = — 0.45

and therefore

*

pUS

This energy ftux may be compared to the total work done by the wall sheamng stress
W = 1, Uy. In.a nondimensional form

W Tw Cf

pU3 ~ U2 2
For the particular example, this value is approximately 3.3 X 10- % It is seen that at
M = 5, the energy lost due to radiation is merely of the order of one percent of the total
work donme by the wall ghearing stress. Thus it is quite clear that in order to resolve
the question of complete turbulence damping, the radiation infensity variation with
higher Mach numbers would have to be clarified.

=14 X10-°
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DISCUSSION DE LA COMMUNICATION DU Dr. LAUFER

Secrétaire scientifique : Dr. W, H. REID

Dr. P. G. Sarrma~ pointed out that there is a danger associated with the calculation
of the sound radiated from a turbulent boundary layer. The difficulty arises from the result
that the sound field from an infinite sheet of random sources is infinite and indeterminate
if the source strengths are stationary random functions of time. If the sound from a distri-
bution of random sources on a finite sheet of dimension L is evaluated, the mean-square
fluctuations at a fixed distance from the sheet becomes infinite like log L as L - ow. The
implication of this result is that Purrirs’ analysis needs to be interpreted with care, since
the coefficients of some of the higher order terms in the asymptotic expansion are infinite.
However, this objection is not thought to he a serious objection to PHiLLIPS' results, since
the difficnlty arises from the particular way in which the problem is formulated and solved
mathematically, and can probably be circumvented. This peint is being examined by Dr.
Ff, WiLLiaums of the National Physical Laboratory, England. Dr. WiLLIaMS has also considered
the production of sound in supersonic flows, with an analysis much closer to the original

formulation of LieHTHILL than that of PmiLLirs; the results are similar, but there are
differences in detail. '



TURBULENCE IN CONDUCTING FLUIDS

by H.K. MOFFATT (U, K.)

SOMMAIRE

Maintenant que l'extréme complexité de la théorie de la turbulence dans les fluides
ordinaires a été révélée, il peut apparaitre 4 beaucoup une extravagance téméraire d’aborder
I’examen des fluides conducteurs de Yélectricité. La situation est déji assez mauvaise,
pourquoi la rendre encore pire en autorisant les électrons, aussi bien que les molécules,
4 se mouvoir sans entraves ? A premiére vue, éiendre toute théorie bien connue des fluides
ordinaires a quelques-uns possédant cette derniére propriété semble refléter une autre
explosion de cette panique contagieuse, Sur quelques points, ’accusation est justifice. Une
tendance s’est révélée de présenter des extensions directes de quelques-unes parmi les plus
connues des théories mathématiques de la turbulence, nécessairement lourdes de formalisme
mathématique, soutenues par des hypothéses d’une validité discutable et impliquant une
série de conclusions dont la signification n’est comprise gune partiellement. Mais Paspect
physique du sujet n’est pas encore suffisamment clarifié pour justifier une approche exclu-
sivement mathématique. _

Il est important & cette élape d’essayer de définir les sortes de situations physiques
susceptibles de se produire, et c’est en partie mon but dans cette conversation.

Il y a relativement peu de publications 4 ce sujet et aucun fravail expérimental n'a
praliquement &té réalisé. Néanmoins, il y a deux raisons encourageantes de poursuivre ce
sujet a fond, ‘ ' '

— D’abord, dans les recherches conicernant Pastrophysigue, et la physique des plasmas,
la présence de la turbulence est souvent supposée lorsqu’on ne peut pas expliquer les obser-
vations par une théorie ¢bien carénées.

Il est cependant trop facile d’user, ou plutét d’abuser, du mot «turbulence », comme
d'une baguetle magique, pour faire disparaitre ce qui ne peut étre interprété autrement.

Il est important d’arriver 4 des conclusions précises, quant 4 savoir quels phénoménes,
dans des fluides conducteurs, peavent étre vraiment attribués 4 la turbulence, et quels phéno-
ménes ne le peuvent pas. o _

— La seconde raison est peut-étre plus académique. L’action de la turbulence sur une
grandeur scalaire, telle que la température, qui est 4 Ia fois transmise et diffusée dans le
fluide, est maintenant bien connue. Pour, compléter le tableau, il serait intéressant de bien
comprendre FPaction de la turbulence sur ume grandeur vectorielle, qui est de “méme
transmise et diffusée. Le champ rotationnel est un exemple, mais il est trop particulier, car
intimement 1lié an champ des vitesses.

Le champ magnétique dans un fluide conducteur est le parfait exemple de sujet de
travail. Les lignes de force d’'un champ magnétique, dans un fluide de conductivité infinie,
sont transportées avec le fluide. Dans les fluides de conductivité finie, elles se diffusent 4
un taux dépendant de la grandeur de cette conductivité,

La situation est compliquée du fait que le champ magnétique exerce une force sur le
fluide; il n’est généralement pas passif dynamiquement; mais dans certaines circonsiances
il sera possible de négliger cette force, et de se concentrer sur 'effet combiné de la convec-
tion et de la diffusion, dans un fluide turbulent, de propriétés statistiques connues.

K
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SUMMARY

Now that the extreme complexity of the theory of turbulence in ordinary fluids has
been revealed, it may seem to many a rash extravagance to admit to consideration fluids
‘which conduet electricity. The situation is bad enough already — why make it worse by
allowing electrons as well as molecules to move unfettered ? At first sight it seems io reflect
another outburst of that infectious stampede to extend every known theory of ordinary
fluids to those few with this “ latest ” property. To some extent, the accusation is justilied.
A tendency has revealed itself to present direct extensions of some of the better-known
mathematical theories of turbulence, necessarily heavy with mathematical formatism,
bolstered with assumptions of debatable validity, and carrying a trail of conclusions of
partially understood significance, But the physics of the subject is not yet sufficiently
clarified to justify an ali-out mathematical approach. It is important at this stage to attempt
fo ugefine the types of physical situation that may arise, and this is partly my aim in this
“talk. ‘

There are relatively few published papers on the subject and practically no experimental
work has been done, Nevertheless two compelling reasons can be given for pursuing the
subject to its limit, Firstly, in astrophysics and in plasma physics research, the presence of
furbulence is often inferred when observations caunot be explained by a streamlined theory.
However it is too facile to use, or rather abuse, the word “ furbulence ", like a magic wand,
to dispel what cannot otherwise be understood. It is important to arrive at some precise
conclusions as to what phenomena in conducting fluids can truly be attributed to the
presence of turbulence, and what cannot, The second reason is perhaps more academic.
The action of turbulence on a scalar quantity, such as temperature, which is both convected
and diffused in the fluid is now fairly well understood. To complete the picture it would
be satisfying fo understand fully the action of turbulence on a vector quantity which is
likewise convected and diffused. The vorticity field is an example, but it is too special,
being closely related to the velocity field. The magnetic field in a conducting fluid is the
perfect working example. The lines of force of a magnetic field in a fluid of infinite
conduclivity are convected with the fluid. In fluids of finite conductivity, they diffuse at
a rate determined by the magnitude of this conductivity. The situation is complicated by
the fact that the magnetic field exerts a force on the fluid — it is not in general dynamically
passive; but in certain circumstances it will be possible to neglect this force, and concen-
frate on the combined effect of convection and diffusion in a turbulent fluid with known
statistical properties. ' ' '

2, The turbulent dynamo

- The gtandard equatidns of _ma,gnetohydrodjnamics can be conveniently written in
terms of the fluid velocity u(r,¢) and the Alfvén velocity at each point h(r, %), which
is simply proportional to the magnetic field H (r, t) : '

b=/ H (1)
: _ 4mp _ -
where p and p are the constant magnetic permeability and density of the fluid. In this

: ‘ : . 1 1
notation the kinetic energy and the magnetic energy per unit mass are —2—u2 and ?}rﬁ

respectively. The total.:p‘ressure x (r,t) is the gum of the fluid preSsure p{(xr,t) and the

. 1
magnetic pressure ) ph?,

1 2
X =0+ oht @)
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The equations for u(r,t) and h(r, t) are then

%}H.vﬂ: “%'Vx+h-Vh+vvzu (@)

oh : | o

¢ TeVh=hVa4iv2h 4
together with ¢ .u =A Vh=0. ' )

Two diffusive constants appear, the kinematic viscosity v, and the mugnetic diffu-
8ivity A, When A = 0, one can deduce from equations (4) and (5) the well-known result
that the flux of magnetic field thi'ough any ecirenit moving with the fluid remains
constant, or equivalently that the lines of force move with the fluid and the strength
of the magnetic field at any point moving with the finid is proportional to the length
of an element of the line of foree through that point. I shall, for simplicity, restrict
attention to homogeneous turbulence, and shall use the gpectrum tensors ¥ (k) and
Ty (k) of velocity and magnetic fields to describe the energy distributions in any steady
state. Let it be our first aim to describe the development and steady state form of these
spectra, given certain gross conditions defining the various situations that may arise,

In 1950, two irreconcilable theories were proposed, the one by Barcupror [1], the
other by Brermanx and ScELTTER [2], to predict the development of an Inttially weak
random magnetic field in a fluid in turbulent notion. To be fair, it must be stated that
no fully convincing argument has yet been given 1o prove or disprove either theory.
The matter is of fundamental importance and it seems highly appropriate that the
theories should be reviewed at this meeting at ahy rate to clarify the points at which
they diverge, and perhaps to suggest some critical problem whose solution might finally

distinguish hetween the two standpoints, Let me therefore recall the main points of .
these theories. :

Barcnrror exploited the amalogy between equation (4) for the magnetic field and
that for vorticity w (= Yim) in a non-conducting fluid, viz.,
%—i—u-sz wNVa+ vV (6)
V-w-=0. : (N
Vorticity is generated by the stretching of vortex Iines ug they are convected by the
fluid motion and it is destroyed by viscous diffusion at high wave-numbers. These two
processes are approximately in eqnilibrieum. Tn the same way, magnetic energy is
generated by the stretching of magnetic lines of force in so far as they are convected
by the turbulent motion. It is to be expected therefore that those statistical properties
of the magnetic field that depend only upon this stretching mechanism will in time
approximate to the corresponding statistical properties of the vorticity fleld. If A =,
the conductive diffusion of lines of force is then just rapid enough for the magnetie
field spectrum (like the vorticity speetrum) to remain approximately steady, If A > v,
conduction wins over stretehing and the field decays to zero, while if A < v, conduction
ig less important and the field increases in intensity. When X ig only slightly less than v,
it is not clear whether an allround decreasc of scale together with increased Ohmic
dissipation limits the growth of the field, or whether it is the Lorentz force which
modifies the straining motion and.so limits the growth. Buth when X « v, BarcaELog
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argued that conduction alone would be of small importance and that the magnetic
energy level must increase until magnetic stresses are comparable with the dynamic
stresses governing the smallest turbulent eddies in ‘which most of the vorticity is

. 1
concentrated, that is until the mean magnetic energy per unit mass I k* iy comparable

with the kinetic energy per unit mass of the sméll—scéleﬁotion, (ev)1/2 (¢ being the usual
rate of dissipation of energy per unit mass). S

Now Bmrmany and Scurirzr did not explicitly ‘discuss the criterion for growth,
but in any case they were considering a fluid, the interstellar gas, to which the condition
A « v certainly applied, and they agreed with BarcmerLor thaf the mnean magnetic
energy would increase in these circumstances.. However, it was their opinion that
magnetic field components of .all wave-numbers would be intensified, not only those

. ‘ . & ) ‘ '
with wave number near the viscous cut-off | 7 Y4 where the vorticity is concentrated,
as suggested by BarcueLor. Briefly, they argued as follows, Congider eddies of dimension

ks :

v : . : :
[ larger than (M_)m but small compared with the dimension L of the energy-containing
\ g

eddies. The {ime-scale of such eddies by Kolmogorovian anulysis is 12/%¢—1/3, When
A « v the magnetic lines of force are to a very good approximation carried by these
eddies as well as by all the smaller eddies that are superimposed on them. One might
therefore expect loops of magnetic field of dimension { to be, say, doubled in intensity
in a time of order 1/ ¢—1/2, Such intensification could then continue until equipartition
of energy-was established at this length-geale. Equipartition' would in this way be
established by degrees at smaller and smaller wave-numbers untl finally the whole
spectruir was thus partitioned. Investigation of this argument veveals that although
BimrMANN and ScuLUTER agreed that the condition A < v was sufficient for initial
growth they would not admit its necessity. The criterion most appropriate to their type
of argnment was stated explicity by S8yrovarsky [3] in 1957, who argued that magnetic
eddies of size I would grow provided the stretching term h:Wu of equation (4) was
greater in order of magnitude than the conduction term AY%h. .

. ” . Uy A 1 u l 1

lL.e,1 ‘ .‘ T:D’?z" 0]-1' Rm()ET> (8)
where 1, (:(sl)1f3) is the velocity in an eddy of size [ and R, (1) is the magnetic
Reynolds number for that length.scale. Bubstituting for «; this condition gives

PRANEIL I C '
a situation that can arise only if Y " ‘ '
. Ly . (10}

£

The test case on which the two theories really collide is therefore when

1 g N\ 1/4 £ 1/4
e(n) <) )

For, by the first of these inequalities, the BIERMANN. and ScHLUTER attack predicts

. ‘ . 1 /e\4
magnetic intensification at all wave numbers in the range [-f:’ (E) -I, while by

"
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the second (tantamount to A :» v) the Barcrmior attack predlcis that all random
magnetic field finctuations ultimately decay to zero 1f 1 use the semi-empirical formuala
for ¢,

5 — ‘ (12)

where «' is the r. m. 5, velouty, and define the Reynolds number R and magnetm Reynolds
number R,. of the turbulence by : . .

w'L w'L '
e Rp=— _ (13
v A o
then the case (11) is defined in more fundamental terms by the inegu 8.1113198 -
1 ¢ R3*g R34 ' ' (14)‘

Let me digress for a moment in order to consider this _problem afresh in the hght
of related work on the spectrum of a scalar solute whick is convected and- diffused in a
turbulent fluid. It is well known and understood that if a variation of temperature,
say, is initially present in such a flnid, the turbulence rapidly mizes the temperature
distribution, increasing temperature gradients without limit until molecular conductlon
finally erases all trace of variation. If a steady distribution of heat sources is prelent
on a large length scale, so that in effect a pulse of temperature variation is emitted in
each small time interval, then there ix established a steady spectrum of temperature
variation whose form at large wavenumbers has been discussed and determined in
divers circumstances by Orukmov [4], CorrsiN [5], Barcapror [6], and BATCHELOR,
Howgiis and TownsENn [7]. Can the development of magnetic field variations be
followed in the same way ? Let us concentrate first on the most controversial case
described by (11) or (14) and suppose again that magnetic variations are present at a
length scale I The ability of turbulence to mix the convected quantity (now a vector)
is in no way reduced. The new feature is the intensification through stretching of the
convected lines of force. In other words the field may initially increase, but the
claim that its length scale at the same time on average decreases is no stronger than the

same claim that is accepted for the scalar field. When the length scale of the magnetic
3\ 1/4 .
field is reduced below (1:) y conduction outweighs intensification, and converts all
the magnetic energy into Joule heat, no matter how mmueh intensification may have
initially taken place. Thus the magnetic pulse disappears in this case like the scalar
pulse although it initially grew in strength for the reason underlying Syrovatsky’s
argument. Of course here again if a large scale magnetie field is maintained (e. g. a
constant magnetic field may he externally applied, or a random large-scale distribution
of electromotive forces may he supposed present) then the turbulemce will generate
fluctuations whose intensity will be proportional to the applied field and whose spectrum
should be easily obtainable. Knowing the spectrum, it is possible to calculate the
increased dissipation and the eddy diffusivity of the turbulent fluid. Thus if the
magnetic fluctuation spectrum increases as k1173 like the vorticity spectrum in the range
1/e
)\8 ’
and falls off rdpidly beyond tlus wave number, then it can be shown that the eddy
diffusivity is approximately equal to the ordinary diffusivity ()\) mult:phed by the 5/2 —
power of the magnetic Reyrolds number,

where neither viseogity nor conductivity is important, i. e. up to the wave number

T

24
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3 3. Fluctuations at low maghetié Reynolds number .
when a uniform field is applied ‘

It is noteworthy that the fluctuations will not be small compared with the applied
magnetic field when the magnetic Reynolds number is large compared with unity. Hence
any perturbation method which assumes that the fluctuations are small compared with
the applied field can be valid only when the magnetic Reynolds number ig smaller, and
preferably much smaller, than uynity. The perturbation approach was used by Liprman~ [8]
in 1952 and by Gorirsyw [9] in 1960, and although the condition R, « 1 was not stated
explicitly in either paper, it is apparently only to thiz case that the theories can be
applied. Liepmann supposed that at time ¢t = 0 a constant field hy is switched on in a
flyid in turbulent motion, and he derived the time development of the spectrum of the
field fluctuations hy, that are generated, on the assumption that these always remain
small compared. with hy :

‘ ' thi| < |hy _ ' {(15)
If this is true, then the equation for h; becomes approximately
%];1 = hy - Yu+AVih ' (16)
In terms of the Fourier coeffici_enfs of the fields u and h,, defined by |
w= ol o dk an
By = f () o dk N (18)
equation (16) may be written - | |
(% + 7\?02) ¢: = (ho"k) ps (19)
with solution _ : _
a (k, t):: {(hy-k) j: g~ e (t—a) 5, (K, 5) do. (20)

If we now suppose that the kinetic turbulence remains statistically steady so that &
is independent of ¢ (thus requiring that the energy transferred to the magnetic field must
remain small eompared with the total energy of the turbulence} then the spectmm
[y (k, t) of the field fluctuation can be explicitly denved

I‘gk,t)—%(k 1 g’k t) :
= (ho'k) f ,/ 6= @t—e=0) p (K, o) py (K, o) do do’

= (ho-k)* fo ﬁ ¢~ (2i—o—a) B (k, 0 — o) du do’

t ¢ .
= (hy-k)* f f oM (ko) By (k, " — ¢} dp dp”
: . o 0
(Writingp:t—o*, P’:—”t-—-——o"). l . (21)
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The star indicates a complex conjugate, and the overbar an ensemble average. @y (k, £)
here represents the Fourier transform of the space-time velocity correlation and its time
dependence is not in general known. Howver, in the case considered here (R, « 1) the
integral is dominated by values of ¢ and p” smaller than any characterigtic time of the
turbulence, so that tI’;, (k, p—p) may be replaced by @y (k), the velocity spectrum tensor,
(the firgt term in an expansion in powers of (p"— p)).
Then
: (1 — g M2
Ty (I, 8) = (k) =

Grolitsyn independently derived with an equivalent approximation the asymptotic
form of this relationship assuming the Kolmogorov spectrum for isotropic turbmlence,

&y, (k). L (2

1 %y kj ' \
By = 0= (24— ) @
where C is a constant of order umty.gSubstltutiou in equation (22) with t+ =¢o, gives
- . -1 Ry kf
Pﬁ(k)ﬁ C h% e2/3 CQ52 i 'E , 18, Ink? (Bg —_ —I';-z--) . (24:)

The faetor cos? 8, where § is the angle between h, and k, represents the anisotropy that
is 10 be expected becanse of the preferred direction along hy. The spectrum, averaged
over auy sphere in wave number space, falls off as k—11/%, i. e, more rapidly than the k—53
fall-off the velocity spectrum, because the.conductive dampmg of figctuations mcreases
Wlth wave number more rapidly than the intensification through stretching.

4. The uniform strain attack when R.»>R

The above analysis is, as already observed, valid only when R, « 1. Let us now
retarn to the other extreme case R, » B (i.e. A « v), that is, the case in which an
inslubility to small magnetic perturbation is to be expected, and examine the consequences
of applying methods that have already succeeded when applied to scalar fields. Inm this
case of high conductivity the length scale at which conduction becomes important must
be small compared with the length scale at which viscous for(,es control the smallest

3% 1/4
turbulent eddies. Any element of volume of dimensgion small compared with —:-)

is simultaneously convected, rotated and uniforrly str_a:ined in the fluid motion, and
it iz plausible to suppose that the uniform strain is the chief agent in modifying any
magnetic field distribution within the element. Barcarror (6) has determined the form

‘ ¢ \1/4

of the scalar spectrum at wave-numbers large compared with (-—é) by considering the
. Ve

effect of a uniform straining motion,

u = (az, £y, 12), (e+PB+y=0) (25)
on a random homogeneous disiribution of the scalar. We may now agk, what is the
effect of such a uniform strain on an initially weak random homogeneons magnetic
field distribntion ? The answer has been effectively given by Prarsox [10] who showed
that the action of uniform strain on a weak random homogeneous vorticity distribution



402

was to increage the mean square vorticity without limit. The same mathematics applied to
the present problem shows that uniform strain increases the magnetic energy without Ii-
mit. This is consistent with the conclusion that when A « v the magnetic energy increases
until the magnetic body force intervenes to restrict the growth, But at the same time
it indicates that the assumption of uniform constant strain is perhaps inadequate to
represent the effect of turbulence on the highest wave number components of the
magnetic field. A thorough examination of the effect of Lorentz forces within such small
volume elements undergoing uniform strain and also of the effect of allowing the rate of
strain tensor to change slowly in time would throw mueh light on this problem.

5. Tuxbulehce dlfivén by magnetic forces

The essential problem of stationary magnetohydrodynamic turbulence is to follow
the flow of energy in wave number space from the two sources (kinetic and magnetic) at
low wave-numbers to the two sinks (viscous and conductive) at high wave-numbers, The

relative strength of the two sinks is controlled by the ratio -;T which is therefore vital

in determining the kinetic and magnetic gpectra at largt, wave numbers. Similarly
the relative strength of the two sources is equally critical in the specification of
the problem. In those problems considered so far the kinetic souree (K) has heen
supposed strong compared with magnetic source (M). Indeed even when M =0 it
is likely that a steady state with non-vanishing magnetic field can be maintained
if X & v. The other extreme case for which K = (¢ and only a magnetic source is present
is equally interesting, and indeed more relevant to plasma experiments in which strong
applied magnetic fields are the only obvious gource of energy for the turbulence that ig
inferred from photographs. This situation has been discussed for a geometry with
cylindrical symmetry by Kovaszway [11] who considered extensions of Reynold’s equation
for mean quantities derivable from equatmns {3) and (4). The velocity fluctuations were
estimated from the balance between Reynolds stress and magnetic stress terms from
equation (3), and this led to an estimate of the induced mean electric field, u 4 h, due to
motion across applied field lines, Knowing the mean current, the effective eddy condue-

tivity of the plasma follows; the value obtained by Kovasmay compared favourably
Wlth experunent.ﬂ estimates.

The situation considered by Kovasznay (K = 0 A > v} is in a sense complementary
to that considered by Batchelor (M =10, v » A). Kovasznay’s work was motivated by
observations of spontaneous turbulence in the presence of applied fields; Batchelor’s by
the widespread astrophysical phenomenon of spontaneous magnetic fields in the presence
of background turbulence. The kinetic and magnetic gpectra for Batchelor’s case and for

the isotropic analogue of Kovasznay’s case ave sketched in figures 1 and 2, in which this
complementanty is pronounced.

To make the foregoing picture of magunetohydrodynamic turbulence less impressionistie,
some experimental results are very much required. For example the determination of the
amplification factor of a weak applied field in the case B »» Ry » 1 would be sufficient
to distingmish between the Batchelor standpoint and that of Biermann and Schliiter.
The condition Ry, » 1 is unfortunately hard to realise in laboratory conditions, but it
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may not remain hopelessly beyond experimental technique. The less mterestmg situation
R.. « 1 offers more scope for experiment. The way has been pioneered by MURGATROYD [12]
who demonstrated that turbulence in channel flow of mercury could always be eliminated
by applying a sufficiently strong transverse magnetic field, It would be valuable to
determine the modification of the turbulence spectrum in the presence of an increasing
field before the elimination is complete, and also to repeat the experiment with a
longitudinal magnetic field {which does not directly distort the mean velocity profile)
as well ag with conducting fluids other than mercury. It is a little paradoxical that
increasing the magmetic source of energy in Murgatroyd’s experiment results in the
suppression of turbulence. The reason is that in inereasing the applied field a more
effective vehicle is supplied for the immediate transfer of energy from the two sources
(applied field and pressure drop in this ease) to the conductive sink which drains energy
efficiently at length scales of the order of the channel diameter, This reasouing only
applies when Ry, « 1. Kovasznay’s contrasting picture of magnetic-driven turbulence is
then relevant to the case Rn » 1, a condition that did indeed apply in the type of
turbulent plasma that he considered.

Let me conclude by summarising the above observations in the following rough
classification of types of stationary magnetohydrodynamic turbulence together with the
chief sitnations in which each type may arise.

(¢) Kinetic source dominant, weak applied field, K » M.

(1) Bm < 1: Small field fluctuations only generated by turbulence (ionosphere,
turbulent mercury, liguid sodiym efte.)

(i) 1 « R,, < R-: Applied field intensified to level controlled by conduction (stellar
interiors, regions of the ionosphere)

(i1} Rn, » B : Equipartition at high wavenumbers, even if M ig zero {(HII regions
of interstellar gas)

(b) Magnetie source dominant : strong applied fields, M » K

(1) Rm « 1 : Suppression of turbulence (experiments on mercury in an inereasing
field) :
(ii) Rp.»» 1: Magnetic driven turbulence (hot plasma, stellar interiors)
This is only a tentative scheme of limiting cases. A more thorough examination of the
: arhcular cages K =M and R,, = 1 might also throw light on the general situation,
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COMMENTAIRE DE LA SECTION

TURBULENCE EN MILIEU
COMPRESSIBLE ET ELECTRO-CONDUCTEUR

Prof. Leslie 5. G. KOVASZNAY, Président

Cne session spéciale était consacrée aux effets de la compressibilité et de 1a présence
d’un milieu possédant une conductibilité électrique. _

il semble étre un peu prétentieux de s’occuper de ees complications quand la turbu-
lence simple d’un fluide incompressible et non-conducteur présente elle-méme des difficuliés
presque insurmontables, '

De nombreuses raisons conduisent 4 exécuter des recherches dans ces domaines quelque
peu ésotériques. Le bruit produit par P'écoulement turbulent est un probléme prafique en
ce qui concerne les avions a réaction. La turbulence magnéto-hydrodynamique semble devenir
un obstacle important au développement des réacteurs thermo-nucléaires contrélés. Mais,
méme du point de vue de la recherche de base, cette question est intéressante parce que le
cas du fluide incompressible et non-conducteur peut étre mieux compris en tant que cas
limite du fluide compressible et conducteur.

Monsicur MOREROVIN a discuté les résultats obtenus dans la couche limite turbulente
supersonique.

Les mesures de turbulence faites 4 'anémométre 4 fil chand dans la couche limite
nous ont surpris. Méme 4 un nombpre de Mach de 1.75 4 2.00, nous avons constaté que le
mécanisme interne de la turbulence différe peu de celui de la couche limite incompressible.
Bien entendu, il y a des fluctuations d’entropie, et méme des fluctuations de pression (des
ondes acoustiques), mais Ia véritable turbulence qui posséde une divergence nulle, c’est-a-
dire la partie incompressible du champ de vitesse, change trés peun. . h

Une des questions essentielles est le comportement des tensions de BReynolds en milieu
compressible, et un choix convenable des lignes de courant moyennes la raméne au cas
incompressible.

Les spectres des fluctuations ressemblent aussi fortement a ceux des couches lmites
incompressibles. ' .

Ces fluctuations peuvent &étre décomposées en trois modes : le mode rotationnel, le
mode d’entropie et le mode acoustique. Deux de ces modes sont paraboliques, autrement
dit, obéissent 4 des équations du type conduclion de Ia chaleur. Par contre le mode acous-
tique est hyperbolique, et obéit 4 une équation de propagation d’ondes.

Dans un écoulement ol Ia région turbulente est bornée, comme par exemple une couche
limite turbulente, ou un jet, ou un sillage, les ondes acoustiques ‘engendrées au sein de la
portion turbulente se propagent et peuvent étre observées dans 1'écoulement extérieur non
tarbulent.

Monsieur LAUFER nous a présenté les résultats de mesures des fluctualions acoustiques
obtenues 4 I'extérieur de la couche limite supersonique, et a fait aussi la critique des théories
existanies sur la production de bruit par la couche limite supersonique. La théorie asymp-
totique de Phillips (valable 4 un nombre de Mach infini) se trouve approximativement con-
firmée. D’ailleurs Pénergie rayonnée est trés faible par rapport 4 la dissipation visqueuse,
méme 4 un nombre de Mach trés élevé, et par exemple 4 M = 5, elle est de I'ordre de 1 9%,
ce qui constitue un résultat syrprenant, ‘ 5
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Diverses considérations sur la turbulence magnéto-hydrodynamique ont été présentées
par Monsieur MOFFATT et j'ai apporié personnellement quelques preuves expérimentales de
Pexistence de la turbulence dans un plasma. Quand le milien posséde une conduectibilité
¢€lectrique, les équations dynamiques (de Navier Stokes) comprennent un terme supplémen-
faire traduisant la force de Lorentz, qui est une fonetion quadratique du champ magnétique.
Par contre, I'équation qui gouverne le champ magnétique est linéaire.

Le probléme essentiel de Paugmentation de Pénergie magnétique totale par Pagitation
de la turbulence cinétique n’est pas résolu d’une fagon définitive. D’autre part, un progrés
- considérable a été apporté dans le cas ol le Nombre de Reynolds magnétique est trés
inférienr au Nombre de Reynolds cinétique. Dans ce cas particulier, le champ magnétique
peut étre traité par une méthode analogue i celle utilisée pour la diffusion turbulente, 4 cette
différence prés que le champ magnétique est une quantité vectorielle transportée d’une facon
passive, fandis que la chaleur, ou la concentration d’une matiére qui diffuse sont des quan-
tités scalaires. La question expérimentale qui s’avére la plus importante est de trouver des
moyens pour réaliser un écoulement turbulent de plasma qui soit gimple et bien défini,





