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SOMMAIRE

Une bréve vie d’ensemble des connaissances actuelles sur les couches limites turbulentes

en écoulement incompressible bidimensionnel est donnée, En particulier, Pattention est
portée vers les différents comportements de 1'éconlement prés de la paroi et dans la partie
externe de la couche, L'ntilité de la conception d’une couche i deux régions est examinée et
le probléme de la prédétermination de la couche hmlte turbulente dans un champ de pressmn
arbitraire est discuté. :

SUMMARY

7 A brief outline of the present knowledge of furbulent houndary layers in twodimensional
incompressible flow is given. In partmular, the attention is directed towards the different
behaviour of the flow near the wall and in the cuter part of the layer. The applicability of
the two-layer conception is reviewed and the problem to prediet the development of the
turbulent houndary layer in an arbitrarily given pressure field is discnssed.
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1. Introduction

One field, in which the knowledge about turbulent flow is most urgently needed, is
the turbulent boundary layer. There is certainly no other type of turbulent flow than
the boundary layer, which encounters in so many engineering problems and is subjected to
such a great variety of conditions. A vast number of experimental and theoretical inves-
tigations on this subject has been published. Nevertheless, the basic problem of the
turbulent boundary layer in an incompressible fluid is still far from being solved. In
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the course of time the range of interest in boundary layers has immensely increased.
Modern developments in engineering sciences have raised many new questions, for
instance what happens to the turbulent boundary layer, when st high speeds the friction
causes heavy temperature variations, when fluid is removed or injected through the
surface, and when many other chahges_ are imposed on the boundary layer.

My paper confines itself to a rather small part of the wide field of turbulent
boundary layer problems. It deals with the turbulent boundary layer in a steady,
incompressible, two-dimensional flow on plane, impermeable walls, There is no doubt

but the treatment of any more complex case profits from the knowledge, which is
available for the simple case. ‘ : :

Although further attempts which could promote the understanding of the flow
Phenomena are still highly important, relatively little fundamental regearch work,
which is within the. scope of my presentation has actnally been published Tecently.
Thus I am not in a position to offer basically new ideas to the problem. The purpose
of my paper is rather t6 recall some egsential aspects and thas to provide a basis for the
subsequent. discussion. Since our final goal iy to be able to predict the characterigtics
of the boundary layer, which develops in a given environment, I will refer to some
eonceptions which have proved useful in this respect and point out, where gaps in our
knowledge prevent further refinements of the existing calculation methods.

Before beginning with the real subject T will give an illustration of the turbulent
boundary layer. Fig. 1 represents a spark shadow graph of a turbulent boundary layer
on g hollow cireular cylinder in supersonic flow taken at NASA Ames Research Center.
This pictures shows clearly the irreguiar but distinet boundary between fluid in turbulent
motion inside the boundary layer and non-turbulent fluid outside the layer. This sharp
outline of the turbulent part is a feature which the turbulent boundary layer has in
common with the turbulent wake and - jet flow, and which has -already been discussed
by Profs. Tixpmany and Corgs during the session on free turbulence, :

2. The twe-layer conception

. . While the early experimental investigations had been confined to the measurement
of mean velocity distributions, later using the hot wire technique and the hecessary
electrieal equipment, the research has been extended to measure diverse statistical
quantities, like velocity fluctuations, velocity derivative fluctuations, several mean values
of velocity fuctuation products, frequency spectra, and space and time correlation fune-
tions etc. These efforts have very much promoted the understanding of the mechanies of
the turbulent boundary layer. Many relations, which earlier have been suspected only,
have been confirmed later by more detailed meastrements and could finally be supported
by a sound physical picture. '

Very extensive and careful measurements of Space time eorrelation functions of the
velocity fluctuations in a boundary layer on a flat plate have been made by Prof. Favke
et, al. [1, 2] here in Marseille. As g starting point of the subsequent representation I will
show two diagrams from these measurements. ¥ig. 2 gives longitudinal ‘space-time
correlations. The first curve is the so called auto-correlation function, which defines the
mean preduct of velocity fluctuation components, observed at the same position of
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Fig. 1. — Shadowgraph of a turbulent boundary laye-r on a hollow circular eylinder at Mach number 3. 1.
Direction of flow from left to right, {Courtesy of NASA Ames Research Center).
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space at different fimes. The other curves represent the time correlation funetion for
the velocity fluctuation components at two different points at distance r,. The longitn-
dinal space time correlation functions shown in Fig. 2 give some information on the
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Longitudinal space-time correlations . in the boundary layer on a flat plale affer
‘ 'FAvRE, GavierLig, Dumas [1], g/§=0.24,
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life history of the eddies. Each cbfrelation curve has a maximum at a delay time ¢,

which increases at a rate proportional to the distance r,. The ratio ®__ ~ 0.8 indicates

e o

that the eddies travel in the flow direction with a velocity of ahout 0.8 U, It is
generally taken for granted that any individual eddy has a limitted duration of life.
This is shown by a decrease of the maximum value of the correlation as r, grows. The
envelope of the curves gives the correlation for optimum delay time %, When r, is
given, the space-time correlation R ({rs, ry,0,%,) with optimum delay £, reaches a
maximum maximorum for one value of r,, Corresponding values of #, and #, form a line
of maximum correlation with optimum delay. The corresponding correlation functions
are presented in Fig, & for three different distances from the wall. As seen from these
- Figs., the correlation coefficient with optimum delay time retains high values for consi-
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g
derable distances = along the mean flow upstream and downstream. On the average,

the passage of a large cddy can be identified over a distance about one order of magnitude
larger thar the boundary layer thickness.
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Frgure 3
Space-time correlations in the boundary layer on a flat plate (r, = 0) after Favne, Gavierlo, Dumass [21,
QO Along the line of maximum correlation with optimum delay ¢, for given r,.

e Along a mean stream line with zero delay.

A most remarkable feature of this figure is the increase of extension of the maximum
correlation function with distance from the wall, which indicates that the eddies nearer
to the wall have u shorter average duration of life than the eddies further away from
the wall. o

 One conception which has widely fourd application in turbulent boundary layer
theory is the so called two-layer concept. It is based on the notion that the flow in the
layer near the wall is ruled by local parameters only, like wall shear stress, distance
from the wall, and local surface conditions (roughness) and, of course, the fluid properties
(density and viscosity), whereas the flow is affected to a great extent by the upstream
conditiong at greater distance from the wall. This idea is physically supporied by the
shorter life duration of the eddies near the wall, as shown by the aforementioned
sample of correlation funetion. E
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Another striking illustration for the different behaviour of turbulent flow near the
solid wall and at greater distances is provided by an older experiment, made by
W. Jacops [3] at Gottingen in 1938, Here turbulent flow in a rectangular channel
passes from a rough surface to a smooth one and vice versa. Fig. 4 shows the shearing
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- FIGURE 4

Variation of the shearing stress distribution in turbulent flow through a rectangular channel,
after W, Jacoss [3].

a. passing from rough to smooth surface

b. passing from smooth to rough surface

x — distance from the border of rough surface

— — — — phearing stress distribution for fully developed channel flow.

stress distributions as calculated from the measured veloeity distributions with the use
of the equation of mean motion. It iz seen from the diagram that in both cases the
shearing stress near the wall assumes. very rapidly the new value corresponding to the
local sarface conditions, while at layers away from the wall the shearing stress, which
equals to the Reynolds stress 1 — — p#® here, changes very slowly. In fact, a new state
of equilibrium is established only at rather long distances # measured from the border
of the rough surface. Although the present experiment has heen made for channel flow

it is beyond any doubts that the basic phenemenon applies aléo to boundary layers.

Usually the law of the wall is based on the assumption that the shearing stress is
constant throughout its region
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and that mean velocity digtribution can be expressed by the similarity relation
YU~ :
where ‘ o
Uy = p

Iy the shear stress velocity, and f is a universal function of Kl which is seen from
o v

#ig. 5. Outside the viscous sublayer the differential quotient of the velocity disiribution
can be written as '

au U
— = (3)
: ‘ ay  ky :
which is derived from dimensional arguments, where kx is a dimensionless constant

: : . U,
(k =0.4). Eq. (3) gives upon integration for large values of -Ev—- the wellknown

semilogarithmicr velocity distribution

U:uf[-—lnﬂ‘i—-q-o].._ ‘ (4)
K
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FIGURE b :
Semilogarithmic plot of mean velocity distribution in the vieinity of a smooth wall,
: Experimental points for a smooth circular pipe after Laurer.
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The value of C is for smooth surface a ynivergal constant. Furthermore it is known that
outside the sublayer, the effect of surface roughness manifests itself merely as a shift
of the velocity profile in the semilogarithmic plot. That means the ronghness distribution
affects only the value of the constant C. :

A very important contribution to our knowledge on turbulent boundary Iayer flow
has been made by Lupwike and Tmimany [4] by whom the existence of the universal
law of wall flow has been experimentally verified in boundary layers wlth NOn-%ero
pressure gradients. The experimental data of various boundary layers coincide near

the wall, when

is plotted versus log Y , thus confirming the general Vahdlty'of the
v

T

similarity relations Eqs, (2) and (4). This result has led to a number of new approaches
to the calculation of turbulent boundary Iayers and is now generally aceepted 48 4
constitoent part of the theory. :

Theoretically an influence of the pressure gradient is anticipated since an additional
ap - o
term y—ai will appear in Eq. (1) and this invalidates the underlying supposition of a
&

constant shear stress. In this comnection an estimate of the shear stress distribution
near the wall is in order here. With the assumption that the universal velocity distri-
bution is valid, Cores [5] has calculated the shear stress distribution by introdueing

the velocity dlstnbutlon according to Eq. (2) into the equdtlon of mean motion which
gives upon integration

dP,  duy Y TN\ Y\
o (). e
The integral can readily be evaluated using the nniversal veloeity distribution.
Numerical values have been given by CorEs. As is séen from Eq. (5) the variation of the
shear stress is affected by the derivative of the shear stress velocity and the pressure
gradient. Both terms are of the same order of magnitude, While the variation of shear
stress is small in the flat platc boundary layer, considerable changes occur if there are

external pressure gradients. A rough estimate may be made with the assumption of a

t, \?

conslunt local skin friction coefficient e —2 (_) .
Some results computed by means of these relations are given in a dimensionless
form in Fig. 6 and show that the variation of the shearing stress depends on the value

. T ar,
of ¢; and is usually much smaller than is expected from the wall constraint 9t =

, .oy do
alone. This may help to explain why an influence of the pressure gradient on the

veloeity distribution near the wall is not observed with most of the experiments. However
this will very probably not hold up to arbltrarﬂy high values of

¥ aPr.
Ty Yo dr

In pdrtu,ular the univergal velocity distribution will certainly not apply when the
region of separation is approached, where the wall shear stress tends to zero. A theore-

aP.,
tlcal attempt to estimate the effect of e on the velocity dmtrlbutmn hag been made.by
ar L
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SzABLEWSKI [6] on the basis of the mixing length concept; the variation of the wall
shear stress in mean flow direction was, however, neglected, Consequently these resalts

are usefnl only if c
' ¥ oU oU ) o dPy
U v d .
pj;_ ( = T oy ) W<y | (6)
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Ficure 6

Variation of the shearing stress near the wall due to am external pressure gradient
\ according to Eq. (5). Local skin friction coefficient ¢, = const.

BzZABLEWSKY'S investigations include also the limiting case of zero wall shearing
stress, for which the velocity distribution may be expressed by

dP.\'* /1 ap, |
Uz(—‘i ) fo(— f) @)

p do p dw +?
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as has been shown by Srratromp [7]. In the fully turbulent part of the fldW, the
. relative motion is again independent of the viscosity and, instead of Eq. (3), we obtain

dU__ 1 'l dP, 1 @®)
dy ko V p de y A

This gives upon integration

o e,
T ko pdwy (p de | % o

. The constant o is expected to be of the same order of magnitude as x in Eq. (3),
Townsarp [9] suggested a slightly higher value, viz. ;= 0.5. The constant of inte-
gration C; may be of the order 1 or 2. After substituting the distribution of Eq. (9) into
the relation (6) and putting C,, we have '

| ydmlog(P 7o ) L 3 Ko o (10)
as the condition that the inertia terms in the equation of motion are negligible. Some
experimental verification of Eq, (9) is given by BrratForRD [8]. But it is felt that much

more experiments are required before a reliable prediction of the effect of pressure
gradient on the law of the wall is possible.

2. Boundary layer on a flat plate

The fact that there is a thin layer, in which the velocity distribution is determined
by local parameters only, simplifies the problem of the outer part of the boundary layer in
so far as the viscosity and surface conditions enter only as boundary conditions, without
having a major effect on the overall flow pattern. In other respects, however, any
theoretical approach to the problem is confronted to the entire complexity of turbulent
flow. Therefore, we will confine the discussion to some characteristic types of boundary
layers for a while. | '

The simplest case of a turbulent boundary layer occurs on a flat plate at zero
incidence. The velocity outside the layer is U, = const. Thus the external pressure
gradient is zero along the plate. This case is to some extent representative of all
turbnlent boundary layer flow, and the results can be applied with some degree of
approximation to the estimation of the skin friction drag of ships, airplane bodies,
Hifting surfaces etc. In absence of an adequate theory describing the turbulent mechanism,

it is necessary to establish a sound basis, on which available experimental results can
be compared. ‘

It may be recapitulated that the velocity profile of the laminar boundary layer on
a flat plate has a similar shape at all distances from the leading edge of the plate, if a

- ye
not exist for the tmrbulent boundary layer, although a crude consideration suggests
such a similarity since both types of layers are subject to the same bagic boundary layer
concepts. The classical theoretical treatments by V. KinrMAn [10] and Pranpri [11]
presumed in fact a complete similarity of the velocity profile. This assumption relied -

: [ U, .
dimensionless coordiate 0=y 4 /—" is introducted. A similarity of such kind does
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» however on measurements covering only a narrow range of Reynolds numbers. More
careful measurements show that this supposition can not be retained over a large
range of Reynolds numbers. Nevertheless a similarity in the turbulent boundary layer
velocity profile can be assumed with a fair degree of approximation, but the similarity
is of a more complex nature. '

The basis of the similarity is the observation that under ordinary circumstances
the velocity profile can be sufficiently described by the local conditions. The specification
“ ordinary circumstances ” means here that there are no severe dislurbances produced
by obstacles ete. upstream of the point of observation, so that a normal development
of the boundary layer is secured. An experimental investigation by Kigsanorr and
DienL [12] shows that disturbances produced by rods, screens and surface roughnesses
in a torbulent boundary layer cause considerable alterations in the velocity profile which
are, however, obliterated in the downstream direction quite soon. At a certain distance
downstream of the disturbing obstacle the same velocity profile is observed as wonld
be expected under normal conditions with the same locs] parameters. These experimental
facts justify one in postulating a loeal similarity for the turbulent velocity profile of the
flat plate boundary layer, according {o which the mean velocity distribution U (y) at any
plane z = const may be taken to deperd solely on 4 local parameters, viz. free stream
velocity Uy, thickness of the layer 8, kinematie viscosity v and the representative length
scale k. of the surface roughness distribution. This behaviour of flow entered the
literature also under the title “ self-preservation of developing flow ”.

Provided that the wall fiow according to Eq. (4) exists, the similarity for the outer
part of the Iayer can best be described in terms of the velocity defect Uy —U. It can be
shown that the parameters v and k. may be substituted by the local skin friction coeffi-

e 2 .
cient ¢y =2 ( o ) - Then the similarity relation for outer part can be written as

T .

U.—U -

_ ___Ff(_?f_J U ) | (11)
Ur 3 .Um

The validity of this universal velocity defect law extends right into the region of
the wall flow provided that the thickness of the sublayer is sufficiently small compared
with the total thickness of the boundary layer. As the wall layer is approached, the
velocity distribution tends to obey Eq. (3), from which the asymptotic form of the velocity
defect law is obtained upon integration. Hence, '

| |  Ue—U 1y fu |
for », 3 = ¥ (M)
Y —=——nYy (U&) (12)

where K’ iz a constant of integration depending on _u:_

'The postulated similarity of the velocity defect could be checked simply by plotting
Uw - U . .
G _ ) versus % as iy done by many authors. Since the boundary layer thickness 3

is a quantity which cannot be exactly defined, I proposed to introduce the dimensionless
wall distauce _(%%T instead of % [13, 14]. The absissa scale is thereby fixed so that

the area enclosed by the curve and the coordinate axes is equal to unity,
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Velocity defect profile of the turbulent boundary layer on a flat plate without external pressure
gradient according to measurcments on a smooth wall by Scmvrrz-Grunow {15], and on a rough
wall by Tiomanw. ’

U
In Fig. 7 the values —= _~  for a fiat plate layer without external pressure gradicnt
e

Yur

are plotted against in a semﬂogarithmic diagi’am. The test points of the smooth

L ]
@

plate according to measurements by ScHULTZ-GRUNOW [15] show that the profiles within
the investigated Reynolds number range may be represented with sufficient accuracy
by a single curve. Nevertheless, a detailed consideration seems to indicate a small

U+

systematic influence of the parameter . The test points of the rough plate according

[ +]

to TILLMANN show somewhat larger deviations due to the greater variation of
€0

D

[ - AP



266

This comparison coufirms the conjecture that the theoretically indicated influence of
Ur

ETR 18 only a weak one. The effect of 15 quantitatively not yet disclosed. Tt must

-]
be admitted that a small error enters with the definition of Eq. (13), if the displacement
thickness &* is computed from the experimental profiles. This error cansed by the thick-

ness of the sublayer decreases inversely with the Reynolds number and is abont 1 % when
Uy 3% ‘ .
=7 (00,

v

With the concept of Iocal similarity, some guantities of the boundary layer can be
‘determined, which on the one hand are used in boundary layer calcnlation and on the
other hand can serve for further examination of the similarity. Perhaps the most impor-

. -

: ¥* U,
tant quantity is the local skin friction coefficient. When ¢ is replaced by » BEg. (12)
Ur

Uo—T 1 yu we \
——— ] K|{— 14
r - n U, + ( U. )? (14)

which applies to the fully furbulent part near the wall, 3, <y <<3. The local skin

2

may be written as

W
friction coefficient ¢; = 2 (—UT—) is deduced from this relation, if

is eliminated
by means of Eq. (4). This gives

2 T, 1 wl¥ ket T
2ol 1,0 +0_(—-1“4—)+K(“ ) (15)
e Us K y v | Us

U,
Values of measured by ScEunTz-GRUNOW and. SMITH and WALKER [163, are
'uq- ) N

U, &*

plotted versus log (
]

) in Fig, 8. If the surface of the plate is hydraulically smooth

tr k :
(C ( bl ) = consiant) and it the magnitude of K does. not depend ou the value of
.Y '

, then Eq, (15) gives a straight line. In fact the deviations of the measurements from

Us,
the straight line -
U, Uy 2*
=575 log + 3.7
r v

remain within the limits of a few percent. More precisely, however, the measurements
geem to lie on a slightly bent curve. This is possibly a conseguence of a continnous

Ur

variation of the velocity defect with the parameter . But it can be stated that this

plot demonstrates conclusively the applicability of the said conception.
The momentnm thickness 9 is.

)=, () o

0=

]

U U \?
o U. ) dy, (16)
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and may also be written as

Ur
=3t (1——-T1), 17
( G ) a0

=

@ m“_U 2 . ’
I “"’): Y-—U d( WT) (18)
Um / O u‘r a* Um )
is expected to be approximately a constant for the flat boundary layer. The ratio
M . .
H—

ag calculated from various measurements is plotted versus .
. T Ur
and compared with Eq. (17). This diagram which has been taken from Hama’s paper [17]

provides another confirmation of the usefulness of the similarity concept.

in Fig. 9

32
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U, # -
| o {57509 U 1) 427,57
, X~ M
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2%
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22 - 7
i % 7 W w W ——gliad® %

Figure 8§

Local skin friction coefficient ¢, of the turbulent boundary layer on a flat plate with smooth
surface as a fanction of the local Reymolds nomber U_5*/v.

Mensurements :

s ScavuTz-GRUNOwW [15]

O x=15.75 in

+ - 27,75 SmITH and WaLxER [16]
* 39.75 ‘

A 51.75 '

The similarity of velocify defect is also justified from a theoretical point of view.
Introduction. of the velocity defect law and corresponding expressions for the Reynolds
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stresses into the boundary layer equations shows that exact similarity requires a constant
value of the shear stress vaelocity .. T will not go into the details of the analysis here,
but is follows : ‘

Complete similarity of the turbulent boundary layer on a flat plate can be
reconciled with the flow equations, if the plate is covered with a roughness distribution
continuously varying in such a manner that the representative length scale %, of the
roughnesses is everywhere in constant ratio to the distance @ from the leading edge.

2.5
H
8 o
15
10
10 5 20 ——= U [ty 30

Ficure 9
Ratio of displacement thickness to momentum thickness H = 3*/g as a function of loeal skin
friction coefficient after Hama [17].
Eq. (17 with T=48.1

O Smooth Scavirz-Grunow
O Smooth Hama

» Smooth

O Rough Hama

These conditions are not fulfilled with ordinary flat plate boundary layers having

smooth or uniformly rough surfaces. However, since the ratio has only a weak

influence and varies very slowly along the &:-axis, there ig always sufficient time for the
velocity profile to adjust itself to the weakly changing equilibrium conditions.
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4. Equilibrium boundary layers

The existence of types of boundary layers for which the velouty proﬁles U,y
at various positions @ are similar in shape and differ only by a scale factor in U and y,
is not restricted to the case of zero pressure gradient. Corresponding solutions of the
laminar boundary layer equations were first treated by FALK~ER and Sxax (see for ingtan-
ce ScHLICETING [28], p. 143). Turbulent boundary layers of this kind have been discussed
from a theoretical point of view by myself [13, 14], and an estimate was made on the
basis of experimental data obtained frem turbulent boundary layers with arbitrary
pressure gradients. Afier CLavser [18] had suceeeded in verifying experimentally turbu-
lent boundary layers in adverse pressure gradients having velocity profiles of similar .
shape the problem was again {reated theoretically by Towwnsexp [19, 201, Cravser {213,
and Corrs [22], These layers are termed likewise similar solutions (by analogy with the
corresponding laminar solutions), self—preservmg layers, and equilibrium layers.. The
name equilibrium boundory layers p1evaﬂs in the literature, and will be used here;

The compatibility of equilibrium Iayers with the flow equations may be examined
by postulating similarity distributions of mean velocity and Reynolds stresses and
substituting them in the eqnation of mean motion, These similarity distributions are of
the same form as for the const. pressure layer with the difference that the velocity at
the guter edge of the layer iy now a function of #. The consideration is confined again
to the fully turbulent part of the layer, and the flow near the wall is assumed to be in
a state of universal equilibrium in accordance with the law of the wall. The case of the
constant pressure layer is just a special case of a more general family of solutmns
Equilibrium solutions exist if

g8*  dI, .
II = — — const (19)
T G
Y — const (20)
a5 '
' = const . (21)

These conditions are met with the velocity distributions of the types Up ~ (@ — @o)™
in combination with 3* ~ (¢ — #o), where the exponent m is related to the pressure
gradient parameter II by ' |

s Um 2] da«- ,
I=—m ( ) . 22)
Ur da ’
and with the type U, ~e*#—3%) ip combination' with 3* == constant, which yields .
II=—ypu ( ) - , (23)
Ur . )

The power law velocity distributions with arbitrary exponent require a rough sur-
face, the roughness length scale varying as {# — ). Boundary layers in adverse (posi-
tive) pressure gradienis are obtained with negative values of exponent m. The negative

2 .
) >0 is

value of m may net exceed a certain limit, otherwise the condition (
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invalidated. With regard to the problem of pressure recovery and the phenomenon of
separation in decelerated flow, the interest is concentrated mostly on boundary layers
in adverse (positive) pressure gradienty. The only exact results of experimentally
established equilibrium boundary layers are those made by Cravsgr [18]. A summary
of the values found by Crauszr for two different pressure distributions together with
the data of the constant pressure layer are given in the Table 1.

Tapre I

Characteristic data of turbulent equilibrium boundary layers
with adverse pressure grodients

o I K 3 U,
Eq. (19) | Eq. (18) | Eq, (14) Sun
Constant Pressore ...... 0 6.1 — 14 3.6
Pressure Distribution I .| = 2 10.1 1.8 6.4
do. 'II_ . 7 19.3 12.2 12.0

The layers show the essential features postulated above from theoretical arguments,
however, the velocity profiles show a marked difference from those with constant pressure,
This difference increases with the pressure gradient parameter II, The variation of the
skin friction coefficient with # is relatively small, however, appreciable differcnces in
¢; exist for the three layers. '

A few interesting problems occurred in combination with the equilibrium boundary
layers. But I think it is not necessary to discuss these questions in more detail here.
I will now change over to turbulent boundary layers in arbitrary pressure gradients,

5. Boundary layers in arbitrary pressure distribution

The pressure distribution on a body or in & duct etc. will probably ot have a shape
which is required to secure the formation of an equilibrinm houndary layer. In the
general case, a turbulent layer will develop for which the velocity profiles have different
- shapes at each position of the surface. Tn particalar, in adverse pressure gradients the
velocity profile usually develops in such a way as to increase the shape parameter,

*

deﬁnéd by the ratio H—

or the value of I according to Eq. (18), in the flow

‘direction until the layer eventually separates at some position, The flow at any cross
section is affected in an unknown manner by the conditions at all sections upstream,

~ One. of the earliegt experimental observations, which has, again and again, found
surprisingly good confirmation by various investigators, is the possibility of representing
the mean veloecity profiles of turbulent boundary layers approximately by a one-parameter
family of curves in non-dimensional coordinates, In the investigations on turbulent
boundary layers before 1950, the momentum thickness § and the velocity U, at the outer
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edge of the luyer was generally adopted as length and velucuty scales. As a characterising
shape parameter the thickness ratio

a*

H = (24)

was introduced. If H does actually determine the shape of the velocity profile, then ail

points of

from meusurements of various sources plotted against H at a constant
g . .

value of %— should fall on a single curve. No theorctical support for this observation

can be given. The power-law _ |
U fn ‘ ‘ ’ : .
U_:(%) . for 0Ky, (@)
initiated by PravwrL for presentation of the velocity distribution of turbulent pipé

1 .
flow and flat plate boundary layer with an expoment # — e was generalised by

Prurscr [23] to the profiles of turbulent houndary layers in arbitrary pressure distei-
bution, admitting a varying exponent. The power law is found very useful for the purpose
mathematical analysis and is often applied even now.

The essential defect of the power-law is the poor agreement with the actual behaviour
in the proximity of the wall. After the experimental verification of the universal law of

the wall, it was 4 logical step to apply the concept of smgle parameter velocity profiles
to the velocity defect proﬁles, defined by

Up T .
W:F( v ) | (26)
Ur 8% U,

Several velocity profiles. from measurements by Lupwike and Tiuuuvans . {4] are
presented in this manner in Fig. 70. The value of T defined by Eg. (18) may be considered
as the characterising shape parameter. If these defect profiles form in fact, a one-
parameter family, then the constant K of the asymptotic relation (14) is a funetion of
I alone. Furthermore, any higher order moment of veloc1ty distribution is uniquely
related to I, for example the third order momen‘r

Ue—TU Ylr :
Iy = — d : 27
2z 0 ( e ) (B*U )y ( )

which is required for the caleulation of the energy ihickness. Some experimental resulis
are presented in Fig. 11 and I2. From the point of view of boundary layer calculation,
it is necessary to know these relations quantitatively.

In order to obiain some numerical support for these purely empirical relations, a
simple approximation for the velocity profile has been proposed by Rorra 13, 14] which
was independently also suggested by Ross and RosrrTsox [24]. The tentative approxi-
mation consists of the Iogamthmw law of the wall, to which a linear term is added,

1 o, ' .
U::.ur:( )+c(w“), for 0 y<? (28)

v -

18
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where A denotes a free parameter. The thickness of the boundary

condition U=1U, for y =35.

+.

layer ig defined by the

S er—r

25

20

(4]

10

Figure 10

Velocity defeet profiles for a turbulent boundary layer in adverse
) to measurements by Lupwies and

pressure gradients according
Tiemany [4].

e I=175 H=137T Uyg/v=11-10%
X 12.0 133 3.1-10
O 15.8 164 46-10¢
i 20.0 1.79 6610

A similar but more refined approximation to the defect profile has been given hy

Corzs .

[25]. Instead of by a linear term the departure from the logarithmic law is

: . : k! S
described by a universal function w -‘BL) » Which is called the law of the wake. The

reason for this choice of terminology can be found in the cloge resemblance of this
function to the mean veloeity profiles in a ‘plane half-wake or half-jet, The velocity defect

profile may then be written as'

U, — 1 . BT
Lﬂzmnlni+—[2_w(i)], for
Ly kK &  k L

tsyss, (29)
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The wake function is w==0 for- 5 =0 w Y =2 for 5 = 1, and satisfies the
. normaliging condition : | . '

'
) ) ¢ 3

A tentative determination of the wake function iz tabulated in the papei- by CoLzs.

25— — -'/;f

7
7/
e
/o

g

10+

0 5 0 15 0 —1 X

Fieure 11 )
Constant K of Eq. (14) #s a function of shape parameter 1

according to velocxty profile Eqg. (28), x=04
- » Eq 29), %=04
Expenmental data ‘ "
% ScHULTZ-GRUNOW [1:.:1 dP,,,/ dr = 0.

g ; LUDWIEG-TILLMANL {47 dPJ/dx =0
| » - > dP_/d2 < 0
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| * - Up-—U \2 v,
Relation between profile parameters I = ‘] ( ) d and T

¢ u, §*U,
according to Eq. (28) x=0.4

_——— > . » Eq. (29) x=04
Experimental data ; -

X . ScEULTZ-GRUNOW [15] dP,/dex=0

é)_ Lupwiec-TmwiMany [4] dP_/dz >0

A hypothetical velocity profile composed of the law of the wall and the law of the
wake is shown in Fig. 13. The dashed line represents the law of the wall. The dash-point

line denotes the wake-like structure represented in Eq (29) by the function w (%)
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\ . D—w
The associated velocity defect U, — U is given by u,BL——-—)—, and the intercept at
K

¥ = 0 of the equivalent wake pfoﬁle therefore differs from the velocity in the external

gtream by an amount . Bince the turbulent motion in the outer part of a bound-

K
ary layer .is effectively unrestricted and the process of entrainment of non-turbulent
fluid takes place by processes very similar to those observed in wakes and jets, the
boundary layer may be viewed as a wake flow, into which a solid thin plate is placed
' 2u.B
at the

centre, At the surface of the plate the boundary condilions of vanishing velocity and
molecular friction are to be satisfied. These conditions. impose an additional constraint
on the flow, whose effect is to modify the mean veloeity distribntion as shown by the
solid line in Fig. 13. Whereas the similarity laws for the wall flow and also for the
velocity defect of the flat plate and equilibrium boundary layers are hased on clear
physical ideas, the similarity conception invelved in Eq. (29) goes far beyond the limits
of dimensional analysis. Therefore, these relations can be applied to conditions outside
the range of observations only with some reservations. A gpecial caution is in order when
the boundary layer is subject to extraordinary conditiong s in the neighbourhood of
transition from laminar to turbulent flow, near separation, reattachment behind
-obstacles, and sudden transition from smooth to rough surface or vice versa.

- This representation of the velocity profiles enables us to calemlate the local skin
friction coefficient as a function of local Reynolds number, shape parameter and loeal
surface roughness and is in general of high value to the boundary layer ealculation, sinee
it can be used in combination with the momentum integral equation ete. But this
possibility can be turned to full advantage not until an additional relation for the
variation of the shape parameter along the surface is available. Many attempts have
been made to establish an equation for the shape parameter of the velocity profile, but
a satisfactory success failed to appear since any rational formalism for the turbulent
motion is denied to us.

- The following consideration may help to explain the general hehavionr of the turbu-
lent layer : If the pressure gradient parameter IT is kept constant in flow direction, the
- parameter I also settles to a constant value, provided the boundary layer is stable. This
case corresponds to the equilibrium layers discussed just before. There will be & unigue
relation between IT and T in thig case. According to the differential equations governing
the turbulent boundary layer it is not expected, that such a unique relation will hold,
"if the pressure gradient varies arbitrarily in the flow direction. Fig, 14 shows, as an
example, the variation of the shape parameter I with the pressure gradient parameter IT
for a number of different boundary layers in adverse pressure gradients. There are
congiderable deviations from the cnrve for the equilibrium boundary layers, as esta-
blished from CLAUSER’S measuremerits. In particular it may be noted that sometimes,
if the pressure gradient has a maximum value, the shape parameter continues to increase
even though II decreases again. In such cases it can happen that at two different positions
of the same bourdary layer, at which the pressure gradient parameter I has the same
value, velocity defect profiles of very different shapes are produced. Boundary layers
with gradually rising value of IT behave similar to equilibrium layers. These measarements

at the central plane, the velocity defect of the wake being U, — U =
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demonstrate clearly the dynamic character of the turbnlent boundary layer flow, accord-
ing to which the present behaviour of the shape parameter is influenced by the previous
history of the flow. This is a corollary of the parabolic character of the equations of
motion.

0 |
1| < (lofie)
252 | ‘
| —=
20
15— M:Aﬁ";//’;

Ur— i

7 273 & 5 6 L g.idk 9

Fisure 14

Variation of shape parameter I willi pressure gradient parameter for different turbulent
boundary layers in adverse pressure gradients.
Equilibrium layer, experiments by Cravser [18]. The other layers are from
measurements hy TILLManx and Lubwige (partly wnpublished).

It is posgible to deduce a differential equation for the variation of the shape para-
meter from certain integrals of the boundary layer equation like energy integral or
moment of momentum integral, in combination with the momentwm integral. This
requires however an assumption with respect to the shearing stress distribution. If it is
agsumed that the shearing stress profileg form a one parametrie family and if the corres
ponding parameter iz unignely related to the shape parameter I, them an equation is
obtained which gives certainly a better approximation to the.actual behaviour than a
unique relation between 1 and pressure gradient parameter II does. In particular, when
the energy integral is used to derive the shape parameter equation; the integral of the
viscous energy dissipation across the boundary layer occurs, which to a good approxi-
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The dissipation integral

1 U\
D= u (-—-—In 1G],

b 2 v
The value of G as a function of shape parameter I for boundary layers in different pressure
distributions, . .
Small spots : Evaluation by a differentiation method [13].
Hatched region : Evaluation by an integration method [27].
@ Determined from CrLausenr’s equilibrium layers.
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mation equals the work done by the mean veloeity on the shearing stress. Applying the
two-layer concept again, the dissipation integral may be written as
D=of [Uo+w® @0

or

' 1 U3
D= (-—- In + G) . _ (30a)
- K Y
When the shearing stress distribution is uniquely related to the mean velocity
profile, the value of & is a function of shape parameter I only and in the second equation
the value of G depends on I and the local surface conditions (roughness). In my papers
of 1950 [13] to 1952 [27] I made some atiempts, to determine the values of ® or G
respectively from available experimental boundary layers. This, however, turned out
to be a difficult job, since the determination of the dissipation integral is sensitive to
small errors in the measurements. Two different evaluation methods have bheen applied,
vizz g differentiation method and an integration method. The results with respect to the
value of G are shown in Fig. 15. The spots are according to the differenciation method,
the hatched area according to the integral method. The caleulation method whieh T
proposed in 1953 [26] is based on these results. Also indicated are the points as calcu-
lated from Cravusgr’s equilibrium layers. The values for the boundary layer with II =2
fits quite well in this picture but the layer with Il = 7 has a remarkably higher value
than determined from the layers in arbitrary pressure gradients. It is thus very question-
able whether with this assumption sufficiently correct results can be expected in all
cases, Actually, algo the shear stress digtribution is affected by the previous history as
became evident from the cited measurements by Jacoss [3]. Any proposals for the shape
parameter equation which make proper allowance for these circumstances are not yet
known. But at least, one knows now for certain that the insufficiency of the present
calenlation methods originate here. Any attempts for a positive improvement must start
at this point. '

6. Non-separating boundary layers in very severe pressure gradients

Let me now mention some theoretical considerations concerning the boundary layer
in very severe pressure gradients, which have been made by Srrarrorp [7] and
TownsEND [9] in comnection with experiments on a boundary layer with zero wall
stress. This caze represents, so to speak, a counterpart to the equilibrium layers and
may be approached in a manner different from those discussed in the previous section.
The generally observed feature of a different and almost independent development of the
flow in proximity of the wall and in the outer part of the layer is found under extrem
conditions in the present case. Close to the wall there is a balance between pressure
and shear forces, and the flow ig again expected to depend only on local parameters
according to the law of the wall. On the other hand, in the outer part the pressure force
is in competition with inertia forces only, while the shearing stress is negligible, if the
pressure gradient is sufficiently strong. Then, in accordance with the Bernoulli theorem,
the total head is to a good approximation constant along streamlines. :

Py + -;— U? = const, o | (31)
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. With the condition that the constant has a different value on each streamline, The
‘streamlines are specified by a constant value of the stream function

zp:fyUdy’. - (32)

velocity profile
- with zero wall stress

'y

J
}
veloerty profite - outer part
at beginning of . 5
pressure rise Ro + £U = const.
4' along streamiines
Y _ o !
B (33) 4.(9) blending region
7!, ] '”‘ ‘ law of the wall
= //////{/y_//j }//// P
X, | X
Fiuse 16

Sketch of the turbulent boundary layer with zero wall stress in severe adverse pressure gradient.
The solid line represents the actual velocity distribution.

Eq. (82) expresses that the velocity profile in the outer part is determined by the
velocity profile at station @, and the. pressure rise P, (2) — Py (@) . In the blending
region between the two layers the pressure forees, inertia forces, and shearing siress
are of equal order of magnitude, and the conditions are thus very complicated. Tn order
to arrive at a usefnl model, it appears admissible to extend the outer law and the wall
law formally right into the blending region, where the two curves intersect at position Ui,

a3 sketched in Fig. 76. Tn this way the first condition for joining the two laws is obtained
from

Pafo0) + 5 Vian, ¢) = Pulo) + £ 020,30, (33)

where the loci (2, ) and (e, ¥i) are on the same streamline. The velocity U (@, 4) and
U (z, %) is introduced according to the law of the wall. The condition that {(®s, /) and
(@, ) lie on the same streamline, results from the Tntegral of the law of the wall. Now
an additional joining condition is required in order to determine the distance of inter-
section and the shear stress at #. StraTronp proposed that the wall law and the outer
law join tangentially at (2, ). Townsexp made an alternative suggestion which prohably
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meets the actual behaviour better. It is based on the idea that (except for the region
near the wall) the Reynolds stress is subject to the upstream history as has been
discussed earlier. Hence there will be only a slow change in the shearing stress along the
streamlines further away from the wall, and it appears plausible to assume the shearing
stress to be constant on the streamline through (z,y,). Moreover, the shearing stress
distribuiton must he continnous. The set of equations obtained gives the velocity profile
and the wall stress, if the pressure distribution is given. But in generdl, the set of
equations cannot be solved explicitly. The particular case that the wall shearing stress
ig zero at position @, has been treated by STrRaTrorv and Townsenp. In this case the

L ' : ap
achieved pressure rise P, (#) — P, (#,) determines the presgure gradient E:i at position

@, which keeps the boundary layer just at the condition of separation. This relation
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Pressure distribution for flow with nearly zero wall stress
xU o)

= 10%.x = distance from virtual origin of turbulent boundary layer.

v . .
(© Experiment by StrRarromn, measured at the wall
Theory after TOWNSEND [9], x = 0.4, x =05, C=5.2, ¢ = 3.8.10=
----- Theory after STRATFORD [T7], %, = 0.27, : .
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. Provides a useful criterion for separation of the turbulent boundary layer and yields
upon integration an approximation to the pressure distribufion, in which a turbulent
boundary layer develops with continuously zero wall stress. The pressure digtribution
according to this calculation with two alternative assumptions as suggested by STRATFORD
and Town~seND, is compared with the experimental pressure distribution for the layer
with zero skin friction after 8TraTroRD in Fig. 17. Although both theories exhibit good
agreement with the experiment in the initial stage, if a proper value of the constant x,
in the Jaw of wall with zero skin friction Eq. (9) is chosen, TownseND’s assumption seem
to be more reliable on the whole. ‘ '

I have mentioned this approach here because I believe that the underlying ideas may
be applied to other cases, where the boundary layer is subjected to sudden  changes as
for example the pressure rige in a compression shock or the suction.through a single slot.

7. Concluding remarks

In order to summarize in a few words the present knowledge on turbulent boundary
layers it may be stated : _

1) The behaviour of the flow in the vicinity of the wall is very different from the
flow in the outer part of the boundary layer.

2) The flow near the wall is determined by local parameters while, in the outer part,
the flow is influenced by the upstream history in a very complex manner.

3) The Jaw of the wall flow has been disclosed by experimental investigations and
similarity considerations. It is very desirable that the mechanism of the flow is under-
stood to such an extent that effects caused by variable shearing stress distribution,
suction and injection of fluid, compressibility and heat transfer can be predicted with a
reliable degree of accuracy. _
~ 4) The velocity profile of the outer part can be described to a good approximation
in many cases. But many efforts are still required until the outer velocity profile can
adequately be related to the pressure distribution.
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DISCUSSION
de la communication du Dr. RoTTA

Dr. R. MicHEL. — Monsieur ROTTA ayant établi des relations entre certaines caractéristi-
ques de la couche limite, il reste pour trailer un cas donné a déterminer pour ce cas Févolu-

tion suivant = d’au moins l'une des caractéristiques en question. - 1
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Dés que le cas est un per compliqué, nolamment dés qu'on fait infervenir un gradient

d : :
—&i on doit se contenter des équations intégrales comme Péquation de Kirmin.:
) L (H+2 ¢} (courant plan in
R —} (courant i i
2 i T, ac ) u bian incompressible)

o est important de souligner que cette équation provient de Vintégration suivant gy
d’équations lacales incomplétes, dans lesquelles on a négligé notamment les dérivées longi-
tudinales des tensions de Reynolds et des intensités de turbulence, et le gradient de pression

op . ‘ :
normal e dii 4 la courbure de la paroi et des lignes de courant de la couche limite,

_ 4 : :
Il n’est nullement certain que ces termes soient toujours négligeables, et I'on citera 3
cas ou ils risquent fort de ne pas I'dtre, ‘

op ' ,
1. Gradients 3 -3 0 (approche du décollement), Presque toutes les expériences effec-
x .
tuées en incompressible montrent quun terme supplémentaire $ doit étre ajouté au C; pour
que I’équatiog (1) soit vérifide par Pexpérience.
2. Les expériences de PoTTER et WHITFIELD sur la transition sur un cylindre montrent
' ds,

que § et 3, croissent trés rapidement ‘dans la zone de transition. Le qui devraijt y

représenter le coefficient de frottement ¥ dépasse largement les valeurs turbulentes.
3. En supersonique, Iors de recompression sur parei concave, la courbure de Ia paroi

conduit i des gradients importants dont il faut tenir compte dans Péquation des

quantités de mouvement pour calculer.correctement la couche limite.

. Professor I. TaNi.. — In Mr. RoTra’s treatment of incompressible turbulent boundary-
layer problems, an empirical formula for the dissipation integral is used to develop an
approximate solution, In Dr. Warz’s treatment (1) of - compressible turbuient houndary
layer problems, the empirical formulae of wall friction and energy dissipation for incom-
pressible flows are used to obtain generalized expressions for compressible flows. The
dissipation formula for incompressible flows is that put forward by Rorra (2) and TRUcKEN-
BRODT (3), but the writer has left some doubt about this formula in that the effect of the
form parameter H (ratio of displacement and momentum thicknesses) is unexpectedly small,
in marked contrast to the case of laminar boundary layers, .

From the analysis of a number of existing experimental data, Rurer and Persm (4)
obtained a dissipation formula showing the dependence on both Reynolds number and H.
By assuming the validity of the Lupwria-TILLMANN formula for wall friction and similarity
of velocity profiles of the form of the velocity defect law, the writer (5) derived from the
momentum and energy integrals the cnergy dissipation in ¢losed form. This describes ihe
dependence on both Reynolds number and H and. yielded results agreeing fairly well with
those obtained by Rusert and Persu. It shonld be mentioned that the RoTra-TRUCKENERODT
formula is based primarily on a single experiment of SCHUBAUER and KrEsaNorr (6) and
that the wall friction as found in this experiment is known to be too high,
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Author's Reply to Professor TANY's remark :

Professor Taxr’s method of evaluating the dissipation integral implies the supposition

dUe
that the non-dimensional pressure gradient, expressed by --—ﬂ— , and the shape
&a I

parameter 1 of the velocity defect profile are independent from each other. In contrast
with this, there exists a functional dependence between the two magnitudes for equilibrinm
boundary layers, This is suggested by theoretical arguments and bas been fullty verified by
CLavser’s experiments, as is seen from Table I and Fig. 14, Tt is not expected that useful
results with respect to the dissipation integral can he obtained from the conditions of
equilibrium boundary layers, if the relation between the pressure gradient and the shape
of the velocity profile is disregarded. ‘ :
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 SOMMAIRE

A la paroi solide d'un écoulement cisaillé turbulent, les tensions de cisaillement sont
transmises 4 la paroi 4 fravers ume couche mince appelée sous-couche laminaire. Cette
région est décrite cornme laminaire car & Iintérieur de cette couche, la tension de cisaille-
ment visqueux, p°U /2y est plus importante que la tension de cisaillement turbulent,
pu' v’ ol U represente la vitesse moyenne paralléle & la paroi, et &' et »° les composantes
des fluctuations de vitesse selon des axes respectivement paralléle et perpendiculaire 4 la
paroi. Cette région existe puisque la temsion de cisaillement reste finie a la lmite, mais
toutes les composantés de la vitesse y sonl nulles. Le fait que la tension de cisaillement
moyenne scit approximativement constante prés de la paroi est un indice important pour
que les régions de cisaillement & prédominance turbulente et laminaire soient intimement
couplées. La question fondamentale a laguelle doit répondre une théorie dynamique de la
sous-couche est : dans Iaquelle de ces régions se passent les phénoménes qui exercent une
influence prédominante sur la dynamique de Ia couche limite tout entiére ?

Les théories relatives a la structure de Ia sous-couche ont consisté, dans leur majorité,
en des modifications de 1a théorie de la longueur de mélange, o le but était de développer
une relation analytique de la viscosité turbulente qui ‘donnerait Ia distribution de vitesse
moyenne, depuis la paroi jusqu'a la portion logarithmique de la distribution de cette
vitesse, , 5 : ‘

Ces théories ont été fort utiles, particuliérement pour les caleuls de transfert de chaleur,

mais elles ne jettent pas beaucoup de luthiére sur le processus physique de base qui advient
dans la sous-counche, - :

Récemment, deux théories fondées sur des modéles physiques déterminés, ont éié pre-
sentées comme explication des phénoménes observés dans la soiis-couche, Pune par
EinsTrv et L1 [1], et I’antre par STERNRERG [2]. ‘ B

Puisque STERNBERG considére la sous-couche comme purement passive, avec des pro-
priétés déterminées par Ia turbulence dans la région extérieure de la couche limite, et
EinsTEIN et L1 considérent la. sous-couche comme active, avec des propriéiés déterminées
par certaines instabilités dans la sous-conche, qui influencent & Jeur tour la région extéricure,
un examen des détails et des conséquences de chaque théorie devrait s’avérer intéressant.

Introduction

At the solid houndary of a turbulent shear flow, the shear siresses are transmitted
to the boundary through a thin region called the laminar sublayer. This region is

9
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described ‘a8 laminar b_ecause within this layer the viscous shear stress, p.—g—, is

greater than the turbulent shear stress, p E’?, where T is the mean velocity parallel to
the wall and «' and ¢’ are the components of the velocity fluctnations parallel
and perpendicular to the wall, respectively. This region exists since the shear
gtress remains finite at the boundary, but all components of the velocity are zero there,
The fact that the average shear stress is approximately constant near the wall is a
strong indication that the regions of predominently turbulent shear and predominently
laminar shear are closely coupled, The basic question to be answered by a dynamical
theory of the sublayer is in which of these regions are phenomena occurring that exert
a dominant influence on the dynamies of the entire boundary layer.

Theories relating to the sublayer structure, for the most part, have been modifications
of the mixing length theory, where the aim was to develop an analytical relation for
the eddy viscosity that would give the mean velocity distribution from the wall to the
logarithmic portion of the distribution. These theories have been useful, particularly
for heat transfer calculations, but don’t shed much light on the basie physical processes
oceurring in the sublayer. o

Recently two different theories based on definite physical models have been presented .
as an explanation of the observed phenomera in the sublayer, one by Einsgrex and Lr [1] %
and one by STERNBERG [2], Since Stermberg treats the sublayer as_purely pasgive with |
properties determined by the turbulence in thé outer region of the boundary layer, and -
Eivstein and.Ii treat the sublayer as_sactive with properties determined by certain
instabilities in the sublayer which in turn influence the outer region, an examination
of the details and consequences of each theory should prove to be of interest.

The Theory of Einstein and Li

Einstein and Li proposed that the observed properties of the sublayer were the

result of an instability of a laminar layer at the wall subjected to the large pertarbing
' forces of the turbulence away from the wall. If we assume that at some instant the
turbulence (as well as a finite mean velocity) extends all the wall, then the no slip
condition requires a region strongly influenced by viscosity to start growing away from
the wall (Rayleigh problem). The laminar region would grow until it was of sufficient
 thickness that certain unstable disturbances could grow, The layer would bresk down
into turbulence and the process would start again. The theory gives the mean velocity near
the wall as well as the fluctuation level of #’ if the experimental values for the sublayer
thickness are used to estimate. the period of the growth-breakdown cycle,

-~ This theory is equivalent to the statement that the sublayer thickness is controlled
by the instabilities in a laminar Couette flow. a statement first made by Taylor, I believe,
Since there is no known mechanism that will maintain a flow on the stable side of an
instability boundary, the flow will cross the boundary, break down, and then, the process
will start again.

The specific predictions of the theory that can be checked experimentally are the
period of the cycle and the time history of the fluctuations in velocity near the wall.
Measurements by Cryom [3] of ‘the pressure fiuctuations on the wall and the velocity
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fluctnations in the sublayer can be interpreted as being roughly in agreement with the
theory although the looked for results did not stand out as sharply as one would like, The
time history of the velocity at a point in the snblayer was found to be a slowly varying
pattern broken by bursts of high frequency oscillations at random intervals. The bursts
and the slowly varying regions were identified as turbulence and laminar flow respec-
tively. The period of occurance of the burst was not regular, but one would really not
enpect it to be if it was the vesult of an mstabﬂlty phenomenon

The Theory of Sternberg

Sternberg proposed that the calculauon of Pranpti [4] for the ﬂuctuatmns in }
velocity near the wall in an oscillating laminar flow could be extended to the calculation E
of the fluctuations in the gublayer of a turbulent flow. Since the essential element of !
this calculation is that the fluctuations near the solid boundary are driven by an imposed
finctnating pressure field, it in necessary. to know something about the pressure field
at the solid boundary of a turbulent flow.
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Pressure and velocity speectra in turhulent hou:udary layers

Measurements of the spectra of the pressure ﬂuctuations at the wall as well as the
spectra of the velocity. fluctuations near the center of a boundary layer are shown,in
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figure 1, where some high Mach number data from J.P.L. are used, For subsonic flows
no measurements of the two spectra exist for the same flow conditions, so that curves
for different Mach numbers have to be compared. It is apparent from the figure that the
shapes of the spectra for the two different types of fluctuations are quite similar in the
low frequency (small wave number) portion of the curve, Why this should be true can
be rationalized from measurements by Favee [5] of space correlations and autocorre-
lations of the fluctnations in a boundary layer, and the comparison of the autocorrelations
and space correlations are shown in figure 2. When these functions are plotted using
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- Figumre 2
Comparison of u (z,f) u(x, ¢+ T) and 2{x, ) 2@+ U, T, ) in a boundary layer (from Sternberg)

Taylor’s hypothesis to relate the time to distance, systematic differences between the
curves appear for large time (or spacing). A consistant explanation for these differences
ig that the large eddy component of the turbnlence moves with a veloeity independent of
the location in the boundary layer. This velocity should be about 0.8 U,= U, for
subsonic boundary layers (consistant with Willmarth’s pressure measurements). Another
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indication of this property of the large eddies is that Kresanorr’s specire [6] (figure 3)
at various positions in the boundary layer are quite similar in the low frequency region
when plotted with frequency as the independent variable, even though the local mean
veloeity. changes significantly from one point to another. A consequence of this obser-
vation is that near the wall, where the mean velocity must be small beecause of the no
alip condition, the imposed large scale disturbances must be moving at the veloeity U, and
associated with these disturbances there is a pressure fluctuation linear in the velocity
fluctuation, |
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Fieure 3
Normalized energy spectra in a boundary layer, data from Klebanoff.

Sternberg uses the velocity spectra in the turbulent region directly to obtain the -
pressure spectra at the wall. As shown previously, the two spectra are quite similar
for small wave numbers, but this correspondence cannot be exact. If it is assumed
that the local velocity pertarbations near the wall but outside the sublayer are small
compared to the difference between the convection speed U, and the local mean velocity
then the « X » equation of motion can be linearized to

% ou’ U 1
W G U 1o
ot . oz oy P oo
The assumption of a convection velocity for the disturbance is equivalent to the statement
Q 5, : ‘
—_ T,
ot ox

3

go that the « X » momentum équation-becomes
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The second term in the bracket is the local « fluetuation- cansed by the displacement
of the mean flow. An examination of the terms shows that the pressure is related only
to the «" fluctuation following a particle and not to the total measured « fluctuation.
That is, to the first order the digplacement of the mean flow causes no pressure distar.
bance although it does affect the measurement of . Therefore the identification of the
bressure {luctuation speetra with the 4’ spectra cannot be correct in general, and will
be particularly poor in & region with a large mean velocity gradient.

With this warning in mind, the csleulation of the sublayer properties from the
properties of the turbulence away from the wall can be carried out ag follows. Near
the mean velocity is almost zero and the pressure fluctuations associated with the large
eddies move along the wall with the velocity U,. The eddy sizes of interest are of the
order of the boundary layer thickness in size, but the sublayer itself is quite thin so
that near the wall only the y derivatives need be retained for the viscous shear stress.
Under these conditions, the non-linear terms of the equations of motion for the flue-
tuations velocities near the wall satisfy the equation,

2uw's . op D%
=¥ . - 1
ot + o oY M

The assumption of a layér of viseons influence near the wall, thin compared with the

or

boundary layer thickness, implies -—-g-?— ~ 0 at the wall.
: Yy

It the pressure field is decomposed by a two dimensional Fourier transform in the

plane of the wall, the equations can be solved for the velocity. The boundary conditions
are

= Ciexpt (K, 2 4- K, 2 — ft)

=
P=¢U%, 8=U,K, y
- wW=0 =y () y=0
The square of the solution for the w’ component of the velocity is shown in figure 4,
where Y = ; 9.
' 2y

The method of using this solution is to find for each fréquency the magnitude of C;

in the fully turbulent part of the layer, y = « in the analysis. The variation of the

amplitnde of the velocity fluctuation for this frequency is then given as a function of
distance from the wall by the solution of eq. 1. Knowing the energy spectra of the

fluctnations in the turbulent region, the spectra in the neighborhood of the wall can be
computed. :

From the integral of the computed spectra the emergy distribution can also be

obtained. The results of thig calcalation, using the data of Klebanoff are shown in
figures 5 and 6. ' '
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Spectra of u” in sublayer where ¢, is obtained from y/& = 0.05.

It ig seen that the ealculation accounts for the extent of the sublayer as well ag for
the variation of fluctuation level near the wall. The measured peak in the turbulence
level at the edge of the sublayer is not given by the theory, but most probably in this
region » has a large contribution from the displacement of the large mean velocity

gradient. The shape of the spectra in the sublayer (-% : LI X 10—3) given by the theory

- has the same general features as the measured specta, but the low frequency region has

R SR

insufficient cnergy.

Disecussion

. Both the theory proposed by Einstein and I.i and that proposed by Sternberg give
“predictions in gualitative agreement with the measured properties of the laminar
sublayer. Also, experimentally obtained information is required in order to compute the
sublayer properties with either theory. Therefore, there is no obvious reason to prefer
one theory or the other. An examination of the details of each model shows, however,
that the pressure model is less questionable than the stability model since the assumptions
required in the pressure model are questionable only as to whether they are sufficiently
good approximations and not whether they represent a process that ig actually occurring,
The analysis of the stabilify model involves assumptions about whole flow patterns
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whose existence hag never been clearly demonsirated. For insiance, the calculation of
the growth of the laminar shear layer into the turbulent fluid raises the question of
what does turbulence mean when the region of wall influence propagates through it
at a rate determined direcily by viscosity.

Another bagis for comparing the two theories iz how the interaction between the
sublayer and outer turbulence is treated. The pressure theory uses the properties of
one part of the boundary layer to computfe the properfies of another, so that the inte-
raction is clearly defined. That a strong interaction is required was seen earlier in the
discussion of the mean sghear distribution. The stahility theory gives only a weak
interaction between the sublayer and the outer turbulence. The influenece of the tarbulence
on the sublayer is small because itz sole function is to contribuie the perturbations to the
laminar flow and cause its transifion. The inflnence of the turbulence in the sublayer
on the outer turbulence is small sinee, if experimental values of sublayer thickness are
used to estimate the wave numbers of the oscillation in the sublayer, the wave numbers
correspond to values close to the Kolmogoroff cutoff wave numbers in the ocuter tur-
bulence. The only interaction most probably occurs in spectral regions where strong
dissipation ig occurring. Therefore, it seems likely that the pressure theory involves
assumptions closer to the facts than the stability theory.

It may be useful to look at the sublayer structure ag resulting from pressure forces
imposed from the outslde. As an example we will estimate the sublayer thickness from
« first principles », and also explain the < intermittancy » observed in the sublayer.

When examining figure §, it was observed that Sternberg’s calculations gave inguffi-
cient energy for the spectra at low frequencies. Thig is cansed by the fact that, according
to the theory, the extent of the viscous wall influence on & fluctuation of frequency f is

" ‘
of the order y ~\/:. Therefore, at a fixed distance from the wall fluctuations with

frequencies greater than some value § (y) will not be influenced hy the no slip condition
at the wall, whereas frequencies 8 < § (y) will have felt some wall influence, the effects
increasing as §—>0. In the turbulence away from the wall the shear spectra
#' (8) v' (8) = 8 (£) extend over a wide frequency range. A calculation of the effect of the
wall on a velocity fluctuation of frequency § might show that the wall inflnence extends

out to a distance from the wall where high frequency components containing significant
shear are not influenced by the wall, Therefore, the calculation should include turbulent
shear terms over part of the y region, and this becomes more and. more important as the
frequency considered becomes smaller, The zero frequency component (the mean flow)
cannot be calculated without knowledge of the turbulent shear distribution. '

The thickness of the sublayer should be related to the .distance from the wall
associated with the frequency above which the extermal turbulence has no significant
shear. Measurements of the shear spectra plotted against a Kolmogoroff wave number
scale are shown in figure 7 along with measurements of the corresponding «’ spectra.
The data can be interpreted as showing that for regions of large mean shear, i. e. near

- the outer edge of the sublayer, the shear spectra departs significantly from the velocity
spectra near K = 0.1 K, where K, is the Kolmogoroff wave number. If we assume on this
basis that the frequency of the velocity fluctuation above which there is negligible shear is
proportional to K,-U, (or U,), and also that the dissipation rate in the turbulence outside
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.'a.

the sublayer is approximately 5 where o' ~ 005U, and 3 is the boundary layer

thickness, then the thickness of the layer associated with the frequency 0.1 Ko U i

5 |
B = [~ 228 R s~
01K, U,

This result is in good agresment with measurements of the sublayer, both in magnitude
and in the exponent of the Reynolds number.
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Comparison of n’ and u’ »* spectra.

The property of the pressure driven sublayer fo attenuate low frequency energy

 with respect to high frequency energy at a given distance from the wall ean be an expla-

nation of the “ intermittancy ” observed by Clyde in the sublayer. If the spacial derivative
of the turbulence outside the sublayer has an intermitiant spacial structure, the sublayer
would tend tv emphasize this intermiftancy by its filtering action. It iz an observed
fact that the derivatives of a turbulent flow are spacially intermittant, but not enough
data are available to relate this to the subla,yer properties.

Conclusions

- The idea of a sublayer with properties controlled by pressure fluctuations imposed
from outside the sublayer appears to be-a promiging start toward a complete theory of
the turbulent flow near a solid boundary. Extensions of this idea or any similar ideas
involving the turbulent stresses would depend on a much better understanding of the
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detailed relations between the velocity and pressure fluctuations in a turbulent flow,
an understanding that will come only through closely coupled theoretical and experi-
mental work,
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SOMMAIRE

On considére la situation actuelle des connaissances théoriques et expérimentales sur
les couches limites turbulentes compressibles, avec transfert de chaleur, et gradient de
pression au long de Pécoulement. Les tentatives méritoires pour généraliser les lois de
similitude admises pour la distribution de vitesse moyenne établies en domaine incompres-
sible n’ont pas encore réussi, 4 cause de la pénurie de données expérimentales valables
relatives & des expériences en soufflerie hypersonique. De sérieux désaccords. emtre les .
résultats expérimentaux ct les prévisions théoriques n’ont encore pu étre évités.

A défaut d’une connaissance plus approfondie, on a exposé au point de vue de Pinge-
nieur sur les distributions de vitesse et de fempérature moyennes en couches limites tur-
bulentes compressibles, avec transport de chaleur et gradient de pression.

Cette conception semble caractérisée par le fait que le nombre d’hypothéses plus cu

moins arbitraires, existant dans beaucoup de tentatives sur c¢e probléme, est réduit au
minimum. ,

Ce but parait réalisable grace 4 Pintroduction d’ume loi généralisée concernant la dissi-
pation turbulente. Avec cette loi, lide & une loi généralisée du froitement aux parois, les
conditions intégrales pour que les quantités de mouvement et Pénergie donnent un systéme
d’équations d’oit deux grandeurs caractéristiques de la couche limite telles qu'un parameétre
de forme du profil de vitesse moyenne, et un paramétre d’épaisseur, peuvent éire obtenues.
(Dans la plupart des approximations-connues, ce paraméire de forme est supposé constant).
Les coefficients locaux et moyens de frottement aux parois, calculés pour I'écoulement sur
une plagne plane, coincident remarquablement bien avec les données expérimentales siives,
obtenues par la mesure de forces.

Finalement, les expériences en soufflerie hypersonique de LoeB, WINKLER et PERSH [11],
et de WiNkLER et CHa [41] sont discutées de fagon critique. _

On a trouvé quau moins la loi d'énergie présidant aux relations entre les champs de
vitesse et de température, est fortement {ransgressée, De plus, on a montré que Pévaluation
de la pente A la paroi en vue de déterminer le coefficient de {rottement local & la paroi
entraine de grandes incertitudes. .

Une nouvelle loi empirique pour le coefficient de frottement & la paroi C, suggérée par
WiINKLER et CHa [41] est discutée i Ia lumiére des considérations théoriques précitées.
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SOMMAIRE

The present status of theoretical and experimental information on compressible turbulent
boundary layers with heat transfer and streamwise pressure gradient is reported. Meritorious
attempts of generalizing the approved similarity laws for the mean veiocity distribution
established on the incompressible field had not yet been successful because of 3 lack of
reliable experimental data from hypersonic tunnel tests. Serious discrepancies between
experimental results and theoretical predictions could not yet be removed.

In default of better knowledge, an engineering concept of mean velocity and temperature
distribution across compressible turbulent boundary layers with heat transfer and pressure
gradient is developed. This concept seems to be distingnished by the fact, that the pumber
of more or less arbitrary assumptions, present in many approaches about this problem, is
reduced to 2 minimum. This aim appeared realizable by the introduction of a gdeneralized
law for turbulent dissipation. With this law in connection with a generalized wall friction
law, the integral conditions for momentum and energy form a system of equations, from
which two characteristical boundary layer guantities, as a shape parameter of the mean
veloeity profile and a thickness parameter, may be determined. (In most known approaches,
this shape parameter is considered constant). Calculated local and averaged wall friction

coefficients for the flat plate flow agree fairly well with reliable experimental data obtained
by force measurement. :

Finally the hypersonic wind tunnel tests of Lomp, WINKLER and PensH [11] and of
WINKLER and CHA [41] are critically discussed. It is found that at least the energy law
governing the relation between the velocity and temperature field is strongly -violated. In
addition it is shown that the wall slope evaluation for determining the local wall friction
coefficient involves large uncertainties. R

A new empirical law for the wall friction coefficient ¢, suggested by WINKLER and
Cua [41] is discussed in the light of the foregoing theoretical considerations.

Introduction

When changing over from incompressible to compressible flow, the theoretical and
experimental treatment of turbulent boundary layer flow involves some specific problems
additional to those pointed out in the contribution of Prof, Kestiv and Mr. Rorra.

Among these additional problems ,the following ones appear to be of principal
interest : ' o : ‘

‘ 1. The influence of compressibility and heat iransfer on the turbulent motion
- across bonndary layers. o ; ‘
, 2, The influence of compressibility and heat transfer on the mean velocity and’
temperature distribution aecross boundary layers, - :

3. Generalization of empirical laws for wall friction and dissipation.

4. Integral conditions for momentum and energy.

5. Calculation of heat transfer. _

6. Critical notes on hypersonic boundary layer surveys.

Ttems 1. and 2. have been thoroughly treated within the section of Prof. Kovasznay,
especially by the contribution of Prof. Morxovin. Hence, in the present contribution
main interest may be focussed on the items 3. to 6. which are central problems of
aero-space engineering. It may, however, be useful to review briefly in chapter 1. and 2,
of the present contribution some outstanding physical facts and relations needed ae a
basis for the subsequent congiderations.
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1, The influence of compressibility and heat transfer
on the turbulent motion across boundary layers

Recent information from refined theoretical and experimental research about this
problem essentially due to Kovaszyay, MorkoviN et al. [1], [2], [3] (for detailed
references see the contributions of the mentioned authors) suggests the conclusion that
the turbulent moiion in a compressible boundary layer in presence of heat transfer and
dissipation is very similar to the turbulent motion in the incompressible case. The
limit for this similarity appears to be reached when the velocity fluctuations themselves
have sonic or supersonic speed. (Former conjectures in this direction see for instance [4])-
This linutmg case is generally present when the free stream MacH-number exceeds the
value 4 or 5 as may easily be estimated by Pranorr’s mixing length theory [4]. Probably
this limit will be identical with the beginning of energy sound radiation with an order
of magnitude comparable with the energy of the turbulent motion or the dmslpatmn a8
may be conjectured with regard to the contribution of J. LAvFER.

2. The influence of compressibility and heat transfer
on the mean velocity and mean temperature distribution across boundary layer

2.1. Classical ;imil«wity concepts.

It is undoubtlessly due to the above stated features of similarity between the
compressible and incompressible turbulent motion that meagurered shear stress and
mean velocity distributions in supersonie turbulent houndary layers are very gimilar
to those observed in incompressible turbulent boundary layers. Surprisingly, even up to
hypersonic free stream MacH numbers between 5 and 9 there are, roughly checked, no
outstanding differences between compressible and incompressible types of mean velocity
distributions, even in presence of heat transfer as is evident by the comparison demons-
trated in fig. 1. The only noticeable deviation is a thickening of the laminar sublayer
with increasing Mace number, while the main outer portion of the velocity distribution
follows in both the incompressible and compressxble cages very elosel;, a powerlaw
with wall distance.

This gross similarity concept between compressible and incompressible mean velocity
profiles has proved to be a rather good basis for engineering theories, aiming at wall
friction and heat transfer estimations in connections with other more or less aceurate
assumptions and empirical relations. Some important facts related to this gross
gimilarity concept will be summarized in chapter 2.2 with regard to the considerations
about engineering. theories in chapter 8 to 5. We must, however, appreciaie here the
intense efforts of many anthors to clarify the physical background of this similarity — as
the ideal aim — to set up similarity theories analogous to those proved successfully in

the incompressible field, for instance basing upon the two layer concept of the turbulent
boundary layer.

As already outlined by Prof Morkovin, some authors (i.e. Cores [5], HILL [b],
FENTER and STaLMacH [7]) proposed a simple generalisation of the “law of the wall ",
such that the gimilarity function remains the same as in the incompressible ease,
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Comparison with experiments seems to confirm such approaches as turns out from
fig. 2, which gives a reproduction of the results of Hiwr [6]. In fig. 2 the dimensionless

veloeity is plotted versus the dimensionless wall distance
Yyu. :
n= ’ ‘ )
Voo
where
. 1” .
U, = (V4]
P
_is the shear velocity and
Yap = (8)

Pw
is the kinematic viscosity formed with the viscosity g, and the density g, at the wall
The relations : -

P (4)

for the laminar sublayer as well as for the “ law-of-the-wall ” region

= f (%) = 5,5 + 5,75 1ogao (%) (5)

[
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are identical with the corresponding relations for incompressible turbulent bouhdary
layers when %, and v, are defined with (2) and (3).

Recently, Rorra [9] [10] promoted the regearch on this field by generalizing the
two-layer similarity concept, assuming that the similarity function of the law of the
wall is influenced by compressiblity and by the rate of heat transfer. This generalization
was also extended to the velecity-defect law of the outer portion of the veloc1ty profile
and to the relations for the mean temperature profile.

Rorra’s generalization of the low of the woll wriles :

= =11 [, M, B (P4, 4, 0)] 5 (6

-

Pr; = turbulent PraNpTL number, ¥ = = ratio of specific heats.

..
w == power of the viscosity law. ‘
The two new parameters M. and f, permit to account for exp11c1t influences of Mach

%
number and heat transfert on ——. The deflmtums are :
Usr ‘
. : ;
M, = H @y = speed _of sound at wall conditioms - (1)
[ o *

20
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B, = o . -qw—_—(x-a—T-) = heat flux at the wall (8)
S ay /w

For M.— 0, §;— 0, the similarity function f; becomes identical with the function 1
equ. (B), of the incompressible case.

Equ. (6) involves two constants of integration, which must be determined as functions
of the parameter M. and 8, by comparison of the new theory with experiments.

To establish gencralized relations for the velocity defect law and the mean tempe-
rature distribution, tangential joining conditions for the inner and outer parts of both
the velocity and temperature distribution must be fulfilled. This leads to rather complicate
relations with some additional constants, which again must be determined from
experiments.

Another, physically very transparent approach solving this problem was published
recently by Dussstxr and Loxrrrmm [42]. This approach includes a variation of the
similarity functions with frictional-heating, Macy number, Rey~orns number and heat
transfer respectively.

The only experiments recently available to Rorra and Durssuar-LosrLER for checking
the above-mentioned theories or for determining empirical constants have been those
of Loes, WINELER, PErsE [11], and of HiLw [6].

As already noticed by Prof. Morxovin, these very difficult experiments display
discrepancies and probable errors (we will refer to this question in chapter 6.). Henee,
some reasonings and conclusions implied in the approaches of the above-mentioned
authors, related to these and similar experiments, must be regarded with caution.

Thus, we are led to the somcwhat unsatisfactory comclugion that actually it is
rather difficult to decide which generalized form of the similarity laws, governing the
mean velocity and temperature distribution of compressible turbulent boundary layers
with heat transfer is the most reliable one.

2.2. Engineering similarity concept.
_ 2.21. Generel remarks.

- The lack of better knowledge, on the one hand, and actual technological interest
~ in approximate solutions or even rough estimations, on the other hand, have stimulated
 many studies in the field of compressible turbulent boundary layers, which are baged
on a simplified concept of mean velocity and temperature distribution. There are indeed
some theoretical justifications for such attempts :

@) Calculations of wall friction, heat transfer and separation behaviour of turbulent
boundary layers along surfaces with arbiirary pressure distributions must be based upon
‘integral conditions for momentum and cnergy. The integral terms occurring in these
equations, ag the displacement thickness 8, the momentum-loss thickness 8, and the

8 3
energy-loss thickness &; ag well ag the ratios~3—1— and -5-3— (in the special definitions (75} (76)
‘ _ 3, 3 :
mostly used as shape parameters of the velocity profile) prove to be not sensible to
uncertainties in the course of the velocity profile, especially to those near the wall

’

Hence the wall slope (—-gi) a8 a property of the velocity profile near the wall may be
Y /w '
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varied in a wide range without practically influencing the shape parameter of the
velocity profile. Consequently, the gain of accuracy in the final results, to be expected
by considering last refinements in the two-layer concept theory, iz in general not
noticeable.

) The local wall friction coefficient ¢; =2 i ;- may be measured directly without
ps Us ‘
: %
exact knowledge of the velocity distribution near the wall (i.e. of the wall stope (%_) IR
' . ‘ Y/ w

for instance by a thermal wall element as used by Lupwire-Trrruaxy [12] in the
incompressible case or by a mechanical skin-friction element (local wall forece measu-
rement), as it was cmployed recently by Marring, CEAPMAN, NYHOLM and TaoMAs [8].
Hence, ¢; may be determined and represented as 2 tunction of gross boundary layer
properties like the shape parameter of the main outer part of the velocity profile and.a
loenl BeyNoups number, for instance formed with the momentum-loss thickness 3s.

¢) For PRANDIL numbers near unity, as existing 'in turbulent boundary layers
of gascs, the temperature T and velocity u are uniquely related (see VAN DRIEST
(C. C. Ling [13], Semnce [17]). Therefore, with given velocity profiles the temperature
profiles are known with adequate accuracy (see 2.2.3.). '

9.2.9. Two-parameter concept of turbulent velootty boundary layers.

With regard to the above statements, a “ two-parameter concept ” as a suitable
base for representing and calculating turbulent boundary layers including the c¢om-
pressible case with heat transfer and streamwise pressure gradient is suggested as
follows : '

@) The full turbulent portion of all velocity profilés- observed in incompressible and
compressible turbulent boundary layers (hence the portion related to the region of the
law of the wall and the defect law) may be represented by a oneparametric family of

CTITVeR
u(@y) Y N
us (@) “f[a(ar) ’H(‘”J‘ ®)

<Y<kl '
81, — thickness of the laminar sublayer

us 18 the velocity at the outer edge y — & of the boundary layer, and H is a shape para-
meter of the velocity profile, which may be defined arbitrarily, For flows with zero or
moderate streamwise pressure gradient the power law

(@, Y) ( y \FE . '

— 3 oL & 10
wa () B(m)) ’ I<y"_< (10)

is found by many authers to fit the outer part of measured veloeity profiles very closely

(see Tig. 1). A theoretical interpretation of this somewhat surprising fact was given
by Lupwige and Tirisanw [12] (pages 205-296 of this reference).

As was shown by Prerscu [15], relation (10) is also applicable to turbulent boundary
layers in flows with favorable and adversc pressure gradients, the range of the power %
then being about ' ‘

0,1 < %< 0,7 ' _ (11)
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. wehre k= 0,6 characterizes the velocity profile near turbulent separatioﬁ. The power & is
uniquely related to any other Properly defined shape parameter H.

R ‘
b) The relative thicknegs —;‘— of the laminar sublayer is assumed to be a function

of the local friction coefficient ¢r only. When smooth surfaces are considered {we will
confine all following derivations to this practically most interesting case), ¢; may he
replaced by a suitably defined local REYNOLDS number R, according to empirical relations
formed with a characteristical boundary layer thickness term.

3 : ‘
Sinte —— decreases with incressing RuynoLps number R, we may assume the
Phenomenologieal relation

(11a)

Qg
5975 ]f F(H.R)

incompressible
du/uy -
[W } = F:[H-Phﬂ..]

TRs

05 compressible

ouiuy 1
'5\]/(31)“], F; [ Ry

Local REYNOLDS number
R1 - Rz - R3

5> 6|.1> 6Lz.';‘.aLa

g
T %.
...._%L.ﬁ_,_ I

Figumre 3 -
Schematic iliustration of the two-parameter concept for turbumient boundary layers.

R = local Revnorps number, formed with the momentum-loss thickness or the flow length.
8. = thickness of the laminar sublayer (schematicly increased).
H = form paramcter of the veloeity profile.
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rl

¢) With the statements of ¢) and b), the total boundary layer protfile may be
composed of the laminar sublayer 0 < ¥ < % and the onter fully turbulent part
8L < ¥ << 3, with or without tangential joining conditions at y — 3,as schematlca]ly

illugtrated in fig. 3.
With this concept the slope
. u\
a{—
Us
Y
6]

is a funection of the shape parameter H and the Rryvorps number R,

( D/ 145
0y/%

whether the velocity # within the laminar sublayer is varying linearly with -the wall
digtance 4! {(as drawn in fig. 3) or not. decording to this concept, the turbulent velocity
profile is, strictly regarded, characterized by two parameters, H and R which may
principally vary independently from each other R indecd has in o first approzimation

B 8 -
— because of 3, & 3 — no influence on the integral terms &, 3, 3, 31 ’ 33
' ‘ 2 2

)wzF(H, R), o (110)

i.e.on H.

d) The parameters H and R or appropriate functions of them may be introduced as
unknowns of an approximate boundary layer theory and determined by solving the
simunltaneous system of the integral conditions for momentum and energy, when the
initial and external flow conditions are known (zee 4.). With this solution the parameters
H (2) and R () are uniquely related. Hence the composition of the velocity profile (and
accordingly that of the temperature profile due to T (u)) can not accomplished before.
having solued the mentioned fwo-equatiOn-svstem With this two~pammeter concept the

physically correct coupling of the quontites H and R or H and ¢; = 2 is automa-

ps s
tically warranted by simultaneously satisfying both the integral condifions of momentum
and energy 2.

A presuppesition for applying these two integral conditions is the knowledge of
the empirical laws for the wall friction and dissipation in compressible turbulent
boundary layers with heat transfer and arbitrary streamwise pressure gradient (or
other agsnmptions must be introduced). We deal with this question in chap. 3. Let us first

precisely formulate the concept of the boundary layer according to the reasoning
under 2.21¢. .

1. This is exactly true only for zero pressure gradient and constant temperature T within the
sablayer. We will deal with this question under 6.3.

2. The quantitiez used in the classical theories of the two-layer concept (see for instance RoTTa
[9] [10]) are functions of H and R, defined such that a certain coupling of H and R is anticipated.
This anticipatory coupling is correct and physically comprehensible for equilibrium boundary layers
and fairly correct for the flat plate houndary layers, but doubifal for all other flow types. Beth
mentioned special cases, however, are correctly included in the above two-parametier concept, as wzll
turn out later on.
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2.2.3. Concept of the thermal boundary layer.

Analogous to the case of compressible laminar boundary layers at a flat plate, an
exact solution of the fundamental boundary layer equations for continyity, momentum
and energy may be obtained also for ecompressible turbulent boundary layers with heat
transfer [13] [14], when reasonable assumptions about the shear stress distribution

n .
—1— ('_'“'") are introduced.
T s
The essential details about this solution will be summarized in chapter 4.2. For Pr; near
unity, for instance Pry ~ 0,9 (as a value consistent with observed values of the recovery |

aTwo
factor 7 ~ 0,9) and isothermal wall, i = 0, the solution T (%) writes :
@

T ¥ 4 o \2 (12)
— —_— ef{—-
Ts T us s
with the abbreviations
g=147r ~-Mi (1 —0) ;
K—1
b=0r ME;
2
k—1
C=—7 3 M§;
(-=2)
K== —
. Gﬂ
where
T, — T,
6=—"_ " (17)
‘ T.—Ts
is the heat transfer parameter, T, the recovery temperature and
T, — Ty T, k—1 _, ) .
_ . G M 18) (19)
’ Te—Ts ? ‘ ( Ts + 2 5 (

the recovery factor. .
At adiabatic walls (@ =0, b= 0) equ. (12) holds also for arbitrary streamwise

. d - : . )
gradients _&f_ On the other hand, for zero pressure gradient equ. (12) is generally valid
- :

for any heat transfer rate. Hence, equ. (12) is a good approximation even in cases with
moderate pressure gradient and arbitrary heat transfer. For determining the density

profile
T
£ —° (_@.E_ — 0) (19)
ps T\ o

occurring in the integral terms 3y, 3, 3, this approximation warrants sufficients accuracy.
For calculating heat transfer rates, however, higher accuracy is desired. We will deal

dT,
with an improvement of this approximation in chapter 5, including the case W# 0.
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3. Greneralization of empirical laws for wall friction
and dissipation based upon incompressible flow conditions

3.1. General remarks.

The number of ideas and theories for computing turbulent wall friction and heat
transfer rates in hypersonic flows are about as numerous as the investigators having
dealt with thig important problem, It is therefore impossible to give here a compre
hensive survey (a statement of references up fo date is given in [8]).

When we try to eritieize the reasoning of the different authors, we find that the
theories which give the best fitting with experimental data are not those with the best
physically cleared background. Indeed, during the last years the experimental research
on this field provided much new material for establishing empirieal relations which
predict wall friction coefficients over a wide range of Mach number, heat transfer rate
and Reynolds number with surprising accuracy. One of these successful caleulation
methods is the go-called T (reference temperature)-method originally developed by
Rusesiy and Jomwson [17] for laminar boundary layers and applied by Fismer and
Norsis [18] to turbulent boundary layers, later on improved by SomMER and SgorT [19].
For comparison with experiments gee for instance [8)] and [19].

The author prefers to describe here in detail a method for solving the present
problem, which involves (as he believes) a minimum of assumputions and no empirical
constants determined from difficult and sometimes not reliable hypersonic boundary
layer tests (see the remarks of Prof, MorKovoxr and the discussions under 6.).

The method which will be deseribed, iz based upon wellfounded and generally
accepted half-empirical relations in the field of incompressible turbulent boundary
layers. This analysis appears to be supported by recent informations about the turbu-
lent motion in compressible flow, briefly reviewed in chapter 1 of this contribution. In
addition, the two-parameter concept as displayed in chapter 2.2.2 and illustrated in
fig. 3, is involved in the physical idea of generalization.

3.2. The generalized wall friction law.

3.2.1. Basic relation for incompressible flow.

There exist some empirical relations for the wall friction coefficient in a flow
without pressure gradient, practieally equivalent with regard to accuracy, namely (in
chro. sequence and perhaps not complete) : The formulae of PranptL [20], v. KaRMaAN-
ScHOoENHERR [21], I’RANDTDSCHLIC]ITING [22], Scmunrz-GruNow [23], Lupwime-
TiLMaNN [12], RorTa [24].

Different modes of representation of these laws are used. The local frietion coeﬂicient
_ -

d
cr, =2 (s = %y ; ps = py When -ap- =0 (20)

Bs U
or the average friction coefficient

1 ,
Cr, = [; o, d (%) (L = flat-plate length) | (21)

are expressed as functions of the Reynolds numbers 2
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Us & .
for o, s Ry = Ps: (Us =Yy ps=p , ps= ke) (2 = turbulent flow-length) (22)
8
w tg L
for  Op,: By=— " (23)

For representing the local friction coefficient ¢, some authors [12] [23] prefer
to use a Reynolds number defined with the local momentum-loss thickness (82)« [equ. (28)]
instead of the flow length ,1ast but not least because of the difficulties and uncertainties

Undoubtlessly the most general and — from the mathematical point of view — mogt
convenient representation of the wall friction law is that developed by Lupwies and

Trumany [12]. This law is characterized by the following advantageous features :
- d

a) Tt is valid in flows with arbitrary pressure gradient _&f_

@

d o
b) Its dependence on -—d—?— wag deduced theoretically only basing upon the similarity
4 o

. . d ]
law of the wall for the flat plate —EI—)- = and was completely confirmed by direct
z

wall friction measnrements with the « thermal wall element ».
¢} It appears well adapted to the planned generalization on the field of compressible

turbulent boundary layers with heat transfer and streamwige pressure gradient.
In its original form for incompressible flow this law writes as follows :
Tw . “(Hm)

=9 — 5 n— 0,268 24
cfi PB ug R ?52)u y 4 ’2 ( )
with \
' s (5a)y :
R (5, = fo s (o) (Moo = pis) (25)
Pae
& (Hys) = 0,246 - 10-0678 &, (26)
8 7 B g U
(B = f (1 ——-) ;5 Cou= f it (1 ———-—) ay (27) (28)
o\ s/ o Us Us ‘

3
HIE — (-a"')u (2&1‘)

3

The function « (H,z), equ. (26), was determined for smooth walls. For rough walls
2 somewbat modified relation would be found. As already indicated, we confine our
considerations to the case of smooth surfaces, ' ‘

A physical ‘interpretatibn of equ. (24) in connection with the two-parameter concept
of chapter 2.2.2 with fig. 3, useful for the planned generalizations, is readily established.
Eq. (24) may be rewritten as follows :

(p. au) /s :L ow/us ]
— - e _55- 1 (82)8__'_ oY/ (32)u o oY/ (B2)u
=2 paus # paus  (32)w 2 prus(3a)y 2 R (32), (29)

s
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Equating (24) and (29) yields :

1 |
[ai%:;] =5 @) [Rep),™ =F [HiwRap,]  @0)

Equation (30) is in its physical sense identical with equ. (11%). The reagoning under
2.2.2, however, is.now refined in so far as suitable definitions for the shape parameter
H=H,; and R=Rs,), are introduced. Tndeed, from equ. (30) we learn that the dimen-
sionless slope of the velocity at the wall increases with the Reynolds number R,
such that, together with the denominator [Rs,) ]* in equ. (29) ¢y, decreases with the n'*
power of Rgs,),. The function «(H,;s} decreases with increasing shape parameter Hiye.
Thiz happens in flows with adverse pressure gradient, Approaching turbulent separation
@ (Hyo) takes values near zero and ¢y, tends to zero for any value R (s,),. The thickness 3y,

of the laminar sublayer which is important in the two-parameter concept of fig. 3, does
not explicitely occur in equ. (30). ' ‘

In the defining equ. (25) for Rs,,, We have quite formally written the density p
with subscript & and the viscosity p with the subseript w with regard to the definition
of ¢y, in equ. (24) and (29). The chosen distinguishing designation of p and p, however,
proves fo be instructive and decisive for the considerations in the following chapter.

3.2.2. Generalizing ideq.

The local friction coefficient ¢; in a compressible turbulent boundary Iayer' with
heat transfer is formally identical with the first term of (29), defined as

g

= 2 —F (31)
ps Us

For the further reasoning, however, we must keep in mind the following differences
between incompressible and compressible boundary layer flow :

@) The local Reynolds number Rs, as the ratio of the averaged momentum loss to
the wall-shear stress 7, or as a ratio of functions of these two physical quantities, i. e,

32
Paﬂg? us 3 - .'
” — £o s @z :R62 (32)
s fhorp
I-”w? -

must be defined with the real momentum-loss thickness

‘ | |
52:f Pe (1»_'{) dy | (38)
4 o Us s

such that the product psui3. gives the real a‘?eraged momentum loss. (The real wall
shear-stress is in any case proportional to the molecular vigeosity p.. at the wall).

1t is, therefore, obvious that the definition (32) for Rs, must contain in the nominator
the quantity ps; and in the denominator quantity 'pu. '

b) The dimensionless wall slope of the velocity profile is not explicitly dependent
upon Mach number and heat transfer. The justification for this assumption is as
follows :
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The turbulent motion is sensitive to the flow-medium-properties ¢ and p, which
are influenced, indeed, by the temperature distribution through the boundary layer,
regardless to the source of the temperature field. The only decigive parameter for the
turbulent motion is the Reynolds number in which the influence of varying values p
and p with Mach number and heat transfer is conglomerated. Thiy assumption (the only
assumption of this theory) appears valid until the turbunlent motion itself exceeds the
sound speed limit (see chapter 1). '

Hence, as characteristical length in the compressible version of equ. (30) for the
wall slope, we cannot use the real momentum-loss thickness 82, a8 defined with (33),

n ‘
because this quantity depends upon M; and O, due to the factor —. Wo must choose

5
a quantity (a length), which is uniguely related to geometrical propoi‘tions of the velocity
profile, for instance the length (3y),, defined with equ. (28). The thickness 3 of the
laminar sublayer, however, is controlled by the Reynolds numbor Rs,, defined with (32),
ag a dynamic gquantity. Consequently, for compressible turbulent boundary layers with
heat transfer, the dimensionless wall slope must be introduced as
/s 1 _
%ﬂ = P (H,z, Be,) = 5 @ (Huz) Rs, ", (84)
where ' and «(I[;2) are the same functions as in the incompressible case, equ. (30).
The only difference between equ. (34) and equ. (30) cousists in the definition of the
Reynolds number Rs,. It is important to note here that with this definition of Rs, (with
ko in the demominator), the slope deercases with increasing wall temperature, hence
with Mach number at adiabatic walls, which is consistent with experimental results
[6] [11] [14]. Accordingly with decreasing Rs, the thickness of the laminar sublayer
increases. Therefore, equ. (11a) writes

§£=qr( 1 ) - (34a)
3 R,

The properties of the fanction W may be studied in two limiting cases, Rs,~>» o and
Rsy~> 1. For Rs,—> o We must expect that the turbulent diffusion towards the wall
increases in such an amount that holds

2

Rs,—> o0 ; =0 (34D)

For Rs,—> 1 the zome of the influence of the molecular viscosity will have spread in
y-direction and have damped the turbulent motion so strongly that (in accordance with
known results of the stability theory) the turbulent part of the boundary layer is
vanishing. Hence we may expect that yields

‘ ‘ 3

3

Bs, =1 ; -1 (34c)

. . |
From (34¢) and (34a) the order of magnitude of -—EL- may be estimated as

o

3 1 -
o B L ew (34d)

l %2
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with
e
£5 Ua

We now come back to equ. (81) which, analogous to equ. (29), may be formally |
written with consideration of (84) as follows ;

 Du
Us
oy
icl b _ -k 7 _ a(Hp) R 3, (35)
psus Qo psusdz  (3z)s Res, (32)u
Hap

= {a(ﬂiz)} % ; n=—0268
Rf:‘: (32)u

Equ. (85) permits the following important conclusion :

@) The term in parenthesis is formally identical with the original law of Lubwise-
TiLrvany for incompressible flow with zero heat transfer, equ. (24), when the general
definition (32) for Rs, is 2also accepted for incompressible flow. Indeed, R(s, defined
by {25), is a special form of (32), viz.

Reg), = (Bs,) 350,60 . (36)

The function o (Hys) is given with equ..(26), while equ. (28a) holds for His, a5 a
@ (Hiz)

-~

(34e)

pure shape-parameter. We avoid to replace in (35) the expression by ¢y, equ. (24},

n

2 *
because in a related incompressible case IIy. may have another value than in the
compressible case.

b} The explicit influence of MacH number and heat trangfer is concentrated in the

3
ratio — » Which, for a oneparametric family of velocity profiles, for instance according
2)u

to equ. (9), and with a correlated temperature profile described by equ. (12), is a known
universal function of the parameters Hy,, Ms and ©. This function tends to zero with
Mz (see 4.4, equ. (90)) and to unity for Ms— 0.

We should like to emphasize that with the introduction of the quantities (3:). and
(B2)u, equ. (27) and (28), no reference or transformation to a corresponding incompressible
case is made. Al quantitics (3;)y, (32)y, 31 and 3 are related to the same velocity profile
and to the same total boundary loyer thickness 3 oceurring in the compressible case.

For computing the local wall friction coefficient for a given problem as a function
of @, the local values of Rs, (¢) and Hi» (#) must be known by solving the system of
interal conditions derived in chapter 4. The average wall frietion coefficient Cyp then
follows by integration from (21},

Before dealing with this problem, we will derive g generalized expression for the
dissipation integral for turbulent boundary layers. This generalization or — instead
of this — physically more difficult assumptions are needed, when it is intended {o use:
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the integral condition for energy for compressible boundary layers. For comparison of
theoretical and experimental wal] friction data we refer to chapter 4. and 6.

3.3. The generalized law for the dissipation integral. |

For the dissipation intepral d within turbulent (and laminar) boundary layers
yields : -
8
i == f tdu (37).
(4]
or in dimensionlegs terms :

d W L % 1 L %
Cp ==- — = P f ——— e )= adl— (38)
P63 Pty Jo  tw - \us 2 ¢ Tw Us

Equ. (38) expresses the proportionality of ¢p and o;. Since ¢ is known with equ, (35),
it remaing to study the behaviour of the dimensionless dissipation integral-term in (38).
For this let us first consider the incompressible case. Evaluations of numerong expe-
rimental data performed by Rorra [24] and rearranged in terms of Hy, and Ry, by
TruCKRNBRODT [25] have led to the following semi-empirical relation :

[5 (Hm) ﬂ 1 1 = % )] $
g T e ———— e —— af —
o R(ﬂ:ﬂ“N (R{ﬁg)u)w 2 (er) [.ﬁ Tw (“5

N =10,168 and p == 0,0056 (40} (41)
where Rs,,, is defined with (25). Bqu. (39) expresses that Cv, i practically independent
of the shape parameter of the velocity profile. This is a very noticeable featyre?,

With equ. (24), the dissipation integral term in equ. (89) may be written as -

1 g 2% , Cp, 28 )
) =2—E= Ri7 "= ®[Hy, Ray,l; (42
{ﬁ Tw 1&6) } - o, a(Hyz) i [Hye _(ﬂzlu] (42) (43)

n—N=01 ‘ _
There is a certain similarity between equ. {42) and (30) insofar as in the compressible
case both the wall slope term (30) and the dissipation integral term (42) may be assumed

to.be not explicitly dependent upon Mace number and hedt transfer by the arguments
displayed under 3.2.25.

Hence, we may write for the compressible casge

1 . u B
, d{—)=®(Hy, Rs,) =2 3N 44
j: - (m) (Hyz, Rs,) 2 (Fa) R&, (44)

with

where Rs, again is defined with equ. (32) and 2

is the same function as in the
. ) 12
incompressible case, The use of Rs, in the definition (32) (with p,, in the denominator)

may be physically motivated by the fact that the maximum of dissipation indeed occnrs
within ‘'or near the laminar sublayer, where . a« y,. ' '

L It may be noticied here, that equ. (39) is, indeed, one of the most important relations of
turbulent boundary layer theory and a key to the use of the integral eonditions for the energy. Thns,
the empirical equations of GRUSCHWITZ [26] and v. DoenrOFE-TETERVIN [27) with limited validity
may be replaced by an integral condition of general wvalidity,
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Now, we introduce (44) and (35) into (38), and find the generalized form of the
dissipation law as '

P(Hi) 25 B 82 B = 0,0056
6p = r A= 3 (45)
(Rag) (52),, (R&z) (82)15 N= 0,168
Again, the influence of Macr number and heat transfer is contained in the universal
3 g '
2 -_—--2—(ZE[12, Ms, 8). An analytic expression see 4.4, equ. (90).
(G} (B2)s

With the generalized relations (35) and (45) for wall friction and dissipation,
combined with the expressions (10) and (12) for the velocity and temperature profile, we
are enabled to make use of the integral conditions for momentum and energy. We need,
indeed, only these two eguations, since all above mentioned expressions only contain
the two unknows Hi» and Rs, as variables, while the parameters M () and @ (z) may be

supposed to be given with any special problem. '

In the following chapter 4, we will derive a form of these equations, which .app'ears'
suitable for both theoretical inlook and engineering calculations. C

funetion

4. Integral conditions for momentum and energy

4.1, Basic equation system,

We base upon Pranprr’s simplifying boundary layer assumptions and introduce,
with reference to the reasoning of Van Dxiesr [13], temporal mean values for all
physical quantities participating in the turbulent motion. Thus; the fundamental
equations for the conservation of masg, momentum and energy in a two-dimensional
mean steady-state flow write in usual terms ag follows :?

2 (pu) 4 _a {e2) '=

0 continuijt (46)
20 ' on v
o u - dp or
ot + v m—— -+ momentum 47)
%0 'V oy dz | o9 |
o (oL dp = Ou G, ( A Dl ) .
U -4 av —=u -+ + . éner, . (48
e T 5y do oYy oYy \ o By & .)
Boundary conditions : y=20: =0, v="=0;
=1y
Y= 344 ) — s,
. Yy =28 i—=1s
i = enthalpy;

8, = thickness of the velocity boundary layer;

$; = thickness of the thermal boundary layer.

In addition holds ' .
o)

 + &) —
T= Er -

- (49)

1. For simplicity we resign to indicate the temporal averaging process by bars, since other than
temporal mean values do mot occur in this analysis, . :
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¢ — molecular viscosity

gr == eddy viscosity

¢, = specific heat at constant pressure

) = effective heat conductivity (including eddy heat diffusity)

For perfect gases additional equations are available as the equation of state
== ¢,T ¢ = earth acceleration : (50)
p = pgRT R. — gas constant (51)
I
T 4 110, 4
(T in [“Kvam], w in [kg.see, /m‘-’])
Further more, the mean value of the turbulent PranpTL number across the boundary
layer

w(T) = 1,486-10~7

Pro=—"—; e,==)=eddy heat diffusity (53)

&g

Cp

is known!

T
4.22, Exact solution for the temperature profile T
5

d
Following Vax DrigsT’s analysis for flat plate flow (_d% = 0) and isothermal wall

dT.. . T ,
(7; =0 ), an exact golution for the temperature profile T may be obtained from the
L)

simultaneous system of equations (46} {47) (48) :

—1
=1 + (f1 . M3 (1 —f,) (54)
8
where the abbreviations f; and fz are defined ag
Z P
E fiz=——;  f=2-1. (55) (56)
_ 8 r :
‘with
’ "u.’"& P' T2 i
e [ (274 (2)
Tw / U5
u/ P --1 i, 1-r -
SCMIACCTE
o Jo Tw Us s
and .
(= ReynoLps analogy factor (59)
2 (P)} = r = recovery factor (60)

1. An interesting, but net well-known theoretienl investigation about the value of Pr, by use of
the theory of probability was published in 1949 by K. Evser [28]. The result is

PI" = '—-3-;- —_ 0,921

which reasonably agrees with the experimental findings.
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For PranxpTn numbers near unity, especially for Prt ~= (), 9 the funetions f; and f,
are very closely described by

% @ \2
f1 =~ —; fame f§ =~ (—“) , (61) (62)
ws

U

and equ. (54) reduces to the quadratic polynomial in ag already noticed under 2.2.3,

Us

2 ‘
Ts s

where a, b, ¢ are functions of the Macm number M; and the heat transfer parameter @
defined mth (13) through (16). Mean values of the RexnorLps analogy factor s and the
recovery factor r from equ. (59) and (60) (with special assumptions about the sh‘ear-s’tress ‘

distribution

) valid over a wide range of values Ms and O, with a few per cent
Tio

uncertainty, are
§=0,85: r=—0%0 _ (64) (65)
These values are also congistent with experimental data (see for instance [8]).

We refer to the reasoning displayed in chapter 2.2.3, from which follows that
equ. (63) may be regarded as a good approximation even in cases with streamwise

dTw ..
pressure gradienis and gradients —wa—# 0, when use is intended only for the
evalunation of integi'al term occurring in the integral condition for momentum and

d :
energy. Because of _dz_: 0,we have for the “ densify profile”

—_— | | (66)

4.33. Concept of approximate solution.
The gquagi-exaet solution (63) for the temperature profile was possible for Pr, near

unity since the power Pri—1 of

T
is near zero, hence )P"t_l ~z 1, This means
T T

that the temperature profﬂe is not sensible to the shear-siress distribution.

T
Therefore, the empirical character of the shear-stress distribution - did net
' w

on the values 8

T
hamper the above solution for T except the small influence of »
8 w

and r. (See also the findings of Drissuer [42] about this question.)

uw .
For determining the velocity profile ~—— in the general case of compressible
Us
turbulent boundary layers with heat transfer and streamwise pressure gradient, it is

difficult to aim at exact solutions with regard to the uncertainty involved in the shear-

stress digtribution . (Many attempts in this direction have been started, among which

Tw
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those of the ref. {101 [42] may be considered as typical and advanced ones). Hence,
efforts for obtaining approximate solutions are of great importance. The classical way
to promote this simplified problem, first proposed by Th. v. Karman {291, was indicated
and prepared in chapler 2 and 3. It essentially consists in assuming the velocity profile

u
-——— to be a one-parametric family of curves according to equ. (9) or (10), correlated to

g .

the temperature profiles by (63), and introducing the half-empirieal laws for wall
friction and dissipation, equ. (35) and (45). The shape parameter H () and the boundary
layer thickness, as the two unknowns of the simplified problem, may then be determined
by solving a simultaneous system of two 1. order differential equations : The integral
conditions for momentum and energy. With these equations some important féatures of
the system (46) (47) (48) are at least fulfilled in the average across the velocity — and
thermal boundary layer. | '

4.4, The system of two integral conditions,

We introduce the following definitions (recalling some definitions already used
formerly) :

n=(1-2) Wi o= [T(1-L)ay  Gmmacement g7 g
Y O L O s
=R =t g

(quantities with subscript « are only dependent on veloeity-profile features, but are
not refated to an incompressible reference case)

23 8
ey = H —shape parameter { ; (r)e = H,; (H) (78) (76)
(az}u (32)“
b
52 33 ' )
"""'—'K'::l——-——z'a—'—e:H* (H;M&,@) ’ Hﬁ8&0,9=0=H (77) (78)
s M3 # '

((77) follows from (63) (69), (71) and (73)).

Pots 8z | - =1 for laminar boundary 1 ,l
3, Rgg =7 ; R&2 - _ (Z: — 0.268 undary layers) (79) (80)
o oy

The integral condition of momentum obtained by partial integration of equ. 47)
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with respect to y and the integral condition of energy, derived analogously from equ. (48)
then write (for details of derivation see [30]) :

i ity Y
dus _dw
dZ de Mo
do + Z s Fl(H, Ma,e)—{-ﬂ;—m— ——Fz(H, Ms, 8) =0
da
“ U P )
momentum (81)
dus :
dH* de 1 : -
+ H* ———Fy (H, M;, 8)— — F, (H, M5, &, R}, ¥ ) == 0 |
do s ‘ A : D
' energy (82)
For the universal functions Fy through F, holds -
' ' 3 g oo '
Fi=2+4n+14n)=; Fy=(l+4n)——q (H) (83) (84)
32 : (32}» .

with
0,246

% (H) - 109,678 Hm;

By == 0,0056

N=0,168; n—N=40,1 - (87) (88)
.(N=1 for laminar boundary layer)

3 :
For the ratio —a-l—(H, Ms, 8) we find from the defining equ. (67) through (74) the
2 .

representation
(1)
8 {82)x 32 ° Hp kK—1
—_— —_— Mz H* 29
R M R | (89)
(B2)u (82)u

| | o |
In addition, for the universal function 3_3-(11, My, ©), playing a decisive role in

2lu
the generalized expressions for the wall friction (35) and dissipation (45) (and in the
related functions ¥, and Fy), we may derive the analytic expreszion

& 1
(aj = K—1 - 00
R Mi H* g
: o3
where ¢ is an auxiliary function, known from exact evaluation of (32) [see (97)].
2)u ’

Up to here, all relations, except those for a;, §; and ¢ are generally valid for laminar

and turbulent, compressible and incompressible boundary layers and not related to
a certain statement for the velocity profile.

2t
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Wkhen the power law (10) for — is accepted, the following special relations result

: s '

from the definitions (67) through (76) ‘
, 1426 2—H

2 (H) =~ 0,0555 H — 0,0832 | (94)
. 83 ‘ :
——=H'g(H, M5 &), (95)
auxiliary functions : : - 1
9 =1+ (2— H) [0,004 M; + 0,0075 M5 — 0,00018 M} ] {1 e L) ] (96)

9= (2—H) [1—0,0719 Ms + 0,00419 M3 ) [1— 0,02 © (1,87 — /33)]
These functions g and. ¢ have been determined from an evaluation of the integral
terms (67) through (76), with use of (10) and (12). :

The shape parameter H takes values between about 1,85 (accelerated flow) and 1,57
{retarded flow), where H < 1,57 designs turbulent separation. '

Qus
It may be interesting to note that the term % in equ. (81) is related to
’ Us
Crauser’s n-function (see Rorra’s paper equ. (19) by
o : . dus

1"__'_‘(31)11'de _ Hp P do
- Tan ' da - G(Hw) s

(98)

4.5. Solution of the system (81) (82).
4.5.1. General remarks, ‘

The system of equations (81) (82) must in general be solved numerically by known
methods of applied mathematics. Since all universal functions are given analytically,
- the golution may also be cbtained by use of electronic computers.

Transformations to an incompressible reference case as proposed by several authors
(as STEWARTSON-ILLINGWORTH [31], Cutick-HirL -[82], Brence [14] [38]) appear not
worthwhile with regard to the inherent simplicity of the system (81) (82).

A simple quadrature method of solution is deseribed in [34]. We confine here to
deal with the solution of (81) (82) for a few special cases of outstanding interest, Such
cages are the “ similar solutions ” (also called “equilibrium flow solutions "} and the
flow along a flat plate. For laminar flow the flat plate case iz included in the gemeral

family of similar solution. For tarbulent flow, however, this is, as is well'known, troe
only in a rough approximation.

4.5.2. Similar solutions. _
We define the case of similarity by P 0, H = const,, i e. constant value of the
shape paraméter. In the case of turbulent boundary layers, thig condition H= const.

1. From ref. [35].
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is not equivalent to Cravsex’s condition for eguilibrinm boundary layer == const.,
d (31)a . w -
: ~ == const. (see equ. (98), but comparable with it.

= const,,
U

More details on this question will be publighed separately.

To show how the gystem (81) (82) principally works out, we first consider the very
transparent case of incompressible laminar boundary layers, for which yields
Hiiy —0, 00 = H, n — N = 0 (no influence of Rs, on Fy). Fy, Fy, F3, P, then are functions
of H only. '

dH* dH _
For T = Fra 0, equ. (82) reduces to :
dus.
de Bt const (99)
e — CONSt. ' }
“ Us HFs : R
By substitution of (99) in (81) follows :
| @z t {100)
—— == const.
and - ' ‘ ‘ .
Z = comnst, . ' (101)
From (101) and (99) then results after integration 4 : ‘
- . N '
z) ~ o™; m = = conat. 102) (103
Ho (@) ~ 75 HF,Fy—F; F, | (102) 19%)

as the general condition for similar solutions, m = 0 being related to the flat plate flow.
This is consistent with the well’known result of the exact theory of incompressible
laminar boundary layers. We note that equ. (102) wag obtained without introducting a
special expression for the one-parametric family of velocity profiles.

We now deal with the case of incompressible turbulent boundary layer. The
derivation differs from the above by that the function F, depends also upon the REvyNoLDS
number Rs,, ‘

- dH '
Hence, for == 0, we obtain from (82) :

us.
de FyHREY) |
4 us - 4(15[,]3‘ = )5 n—N=1,] (104}
_ X -

Substitution of (104) in (81) now leads to an ordinary differential equation, which
permits no closed solution. Nevertheless, the system (81) (82) may be solved by nume-
rical methods, thus delivering the distributions (accelerated or retarded flows), for
which the shape parameter H remains constant. Bpecial results of such calculations
will be published soon (Thesis of H. Fernrorz, Techn. Univ. Karlsruke [35]).

4.5.3. Flat-plate flow, incompressible.

We now will focuse our interest on the épeci.al case of turbulent flat-plate flow,
which proves to be not a similar solution of (81) (82), contrary to the laminar case.
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For the flat plate flow the system (81) (82) reduces to

dZ :
=T I
 da g (103)
dH* — _F_"l_ (106)
de Z .
25
0 & Smooth Schultz-Grunow
o Smooth Hama
. Smootth
Hiz | ao ‘ © Rough amd
© ' — theory ROTTA
& —-—~theor ]
N8 ySW
3 —-~-theory
1 o
: .
N
| i
b t
15 E i
f H
— ' R :
::':‘ "3 | with Hyy =f(H,Rep,) from Rotta | -™eaI = ~ _
S &
o, o
o
. ' '
1.0 . . - ‘ ' y ‘
10 1% | 20 > Uu [u, 30

Ficurr 4
Incompressible turbulent boundary layer at a flat plate.

' 5 U, [Z
Variation of the shape parameter H, — (—-—-) of the velocity profile with = .
' ‘ & /u Uy E1

Comparison of experiments with the theories of RorTa and Warz
(fgure reproduced from Rorra’s paper [44], references see there).

Considering first the incompressible case with

dH* dH

—=—— F=F(H); F.=F(EREY,

_ JH ‘
we easily find that there exists no solution for == 0, since F4 has, mathematically

spoken, no finite zero point. The zero points of Ty are varying with Rs,, which ifself
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varies with #. Indeed, from the solution of the slmultaneous system (105) (106), the

shape parameter Hy; results as a function of the Rev~NoLps number Ry, (o) :

Fipi (0) = f [Rs, (@)] - (107)
(For details of caleulation see [34]). '

To establish the relation to usual representations ‘of this resull in ferms of Hys

Ur .
and ¢ or u —‘ / from equ ‘)4), basmg

upon (76) and plotted in fig. 4 Hi. against %, as has done Ro'rm [44] in fig. 9 of his

paper. Without roughness, the houndary layer would be laminar when R, g), 18 smaller'
then about 100. Nevertheless, the theoretical curves are drawn down to By, =10 and
1 -respectively.

015

Cr.

?

010 \

¢ [KARMAN-5CHOBNHERR

3

\
prese \

005 \\

\\

[ ]
ol | -
3 4 5 6 7 12]_ 1 11
Ficugre 5
Incompressible turhulent bhoundary layer at a flat plate
' 1 x - P qu‘ .
Average wall friction coefficient C,, = f ¢ d (—) as a functiun of B, = —
0 L Mg

Comparison of the present theory with the law of KAI_\M.&N-S(:_‘HOENHEBR.‘
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1t is seen that the results of our theory based upon ‘the two-parameter concept and
applied to the flat plate case are equivalent to the two-layer concept theory described
in the paper of Rorra [44], except the case of roughness (which could be included by a
modification of the function z (Hiz), equ. (26)). By integration according to (21), we may
derive the relation between the average friction coefficient Cy and Ry, equ. (23). The
result Cp(Ry) is plotied in fig. 5 and compared with the corresponding KARMAN-
ScuornEERR-relation [21]. Complete agreement is obtained in the range 10® < Ry, < 10°.

4.5.4. Flat plate flow, compressible.

The system (105) (106) may be solve without principal difficnlty also when
compressible flow with heat transfer ig present, In this case the shape parameter H of
the turbulent boundary layer turns out to be a function of Ra,, M5 and 6 (see [34]).
We confine to give here the results of this calenlation for the friction coefficients ')
and Cr, equ. (35) and (21), related as msual to the incompressible values ¢y, and Cp,.
With regard to the difficulties that are present when ¢; and ¢y, are expressed in terms
of the ReyNoLns number R, equ. (22), formed with the flow length 2, we prefer to take ¢,
and ¢, at the same local value Rs, where for incompressible flow Rs, is identical
with Res,),, (see equ. (25) and (32)). :

Since the shape parameter H is found to be a function of Rs,, Ms 6, this is true

3
also for the functions « and —u—z—-—, occurring in the expression (35) for the local

. ' 'r(s.'l)u
e
friction coefficient. Thus —— may be expressed as a function of Rs,, Ms and 6.
Cf‘ :
Cr

Correspondingly, the ratio for the averaged friction coefficient is obtained as a

¥y
function of Ry, (equ. 23)), M5 and ©.
S ‘ |
In fig. 6 L is plotted against Ms with Rs, as parameter for adiabatic walls (@ =10).
Cr, o ' .

Fig. 7 shows —'— versus M, for the fixed value of Rs, = 10% for various heat transfer
| 9 | . '
rates expressed by the parameier 8 (equ. (17)).

Cr

" Finally, in fig. 8, versus Ms is represented, with By and © as paramater.
‘ : “F; .
In these three figures also comparison is made with experimental data.

By reasons displayed in chapter 6, at Mace numbers M; > b, only those experimental

¢ :

data for ¢; or .. appear reliable, which are determined by local force measurements [8].
. ‘ Gf‘ )

But also for some of these experiments the comparison with the theory is somewhat

hampered by the fact that the Rey~oLps number Ry, is given instead of Rs,. Since the

relation between Rs, and Ry may be estimated (see [34]), and the influence of Rs, on

c a
—L_ in the usual range of Rs, (10% < Rs, < 10#) is small, the resulting possible errors
Gn ‘ : ‘
are not exceeding a few per cent. _ ‘
From the figures 6 to 8, we may conclude that the developed theory agress fairly
well with reliable experimental data.
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' T,—Ta
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In fig. 9, in addition, we have reproduced the results of a comparison between
recent experimental data and several theories for predicting the wall friction coefficients
at adiabatic walls as a function of MacH number and REYNOLDS number, published
by Marrivg, CHAPMAN, NYHOLM and THoMas [8] (tig. 22 of thisz publication).

‘ : L T
This figure also contains the theoretical results for —E—f- from the above coutlined
t,

‘ : 3 '
analysis (drawn from an earlier publication [86] of the present writer, and transformed
for comparison at equal values Rx). There ig a discrepancy between this theory and the

. ' o ‘ . . Cr .
experimental data, in so far us the expermments show no variation of —— with R,
) . . . cf;
Cr

. ‘ ’ Gy,
investigations for clearing the discrepancy are in operation, but could not be completed
before this paper was written 1.) '

while the present theory predicts a small increase of with increasing R,. Detailed

1. In the expression for €;/¢p, the REyNoLns number R, occurs with a small power, which is
obtained as the difference between two abont equa)l numbers. Therefore, small errors may have a
relatively large effect. It is conjectured that the simplification g (H) ~ 8 = 0,0056, equ. (45), introduced

Dz
by TRUCEENBRODT [251, as well as the simplification g

=~ A (M, 8) R, BM5,8 in [30] and [34]

‘ (Dete
are the source of the observed discrepancies. Both simplifications are omitted In a repeated calculation
which_ i; in operation. - - : '
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5. Calculation of heat transfer

5.1. Reynolds analogy. 7
The local heat transfer, with regard to equ. (12), writes :

B E e
Y Jw Rep Jw\ du Ju oY Jw
' T
¢ Ts d(Ta)
- .

= — Too (108)
Pri. _
CCER
. k1
or in dimensio_nless terms with b (M5, ®) from (14) :
q (@) 1 ¢Ts 1
—_— b M y @ —
ous Py 2uf peus D OO
Gt
2
= M (109)

T PR TS, (Pr)n 4

dT '
When { —— } is determined directly from Van DRIEsT'S solution (54) with (55), (57),

’ w

and (17), we find

(‘ZT' = 2o Tr—To (Pr)s [(_E)Pr‘_l] _ T Be k—1ipe )
au /.y Ua Ts - s Tw dven, Us 8 2

Hence, a samewhat refined expression for the dimensionless local heat transfer
follows from combining (108) and (110) :

g (2) roc r T, —T,,
:m—m@:w—m—StB- Gx——-— . 111
| psus® 2 2 2 ’ T, —Ts i
where ' .
. Of‘
— = 8t _ (112)
2s

in the STanToN number.

Expression (111) hold's, because of the unique relation (63) between the velocity and
- temperature field, according to the RrynoLps analogy between heat transfer and wall
friction. ' _ - :
We must, however, keep in mind that this relation is exactly valid only for zero
: dp - dTw :
streamwise pressure gradient EP_ = 0, and isothermal wallg Fre =0, and that general
_ 2

z .
uge of this relation is justified only for evaluating the integral terms (67), through (76),

Since the mentioned conditions are not fulfilled in many cases, an improvement of
the above heat transfer calculation is desirable, which leads to the so-called * modified "
ReynoLps analogy.
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52, Modified Reynolds analogy.
5.2.1. Present state of development (method of Cohen},

Since the exact solution of the system (46) (47) (48) With_consideratiOn of streamwise
pressure and temperature gradients is a difficult attempt, this problem was attacked by
several anthors by means of integral conditions.

The publications known to the author, however, account only for the influence of
& presgure gradient _di but include not a streamwise temperature gradient, which in
T

the laminar case proved to be very important. See for instance the approaches of
CrarMan and Rusesiy [36], ScHLICHTING [‘%7}, DievemMany [38]

An analysis typieal for many otherq, which aims at a modified Reyvorps analogy

considering the influence —d-d% only, is that of Comry [39]. (List of references about this
topic see for ingtance [39].) |

First WigcEARDYS [40] form of the emergy equation is derived by mult1p1ymg
PraxpTL’s equation (47) with o :
[ u? u?
o(3)  2(3)
Pu_....2_+P”___._2_—_.uﬂ+u at
oz oy dz Y
By addition of (113) and (48) with eonsideration of (46), a new form of the energy

equation is obtained, in which the pressure term cancels and the term of the shear.
work in (113) and the dissipation term of (48) are combined, viz.

(113)

Olpuhk)  o(pvh)  lur) (1 oi ) .
+ — -[— — M t=1¢, T 11‘.‘:)
L Y % 9 \% ’ (
with the abbreviation for the total energy
' : 2
h= i + — ' (115}

Now, by partial integration of (114), with respect to y from y =0 to y=1Y;
Y-—-const > any 3(«) yields :

—[ f pubdy |+ [poh g = (G ay) ——q(®); [wIf=0  (116) (117)
4

Y
(pv)¥ = [ f ou dy] (from equ. (46)); (118)
)
Thus the term related to the shear-work and dissipation cancels, too.
Equ. (116} is now combined with the integral condition for the momentum, which

. L . d .
containg the local wall friction ¢; and the pressure gradient _c_ig_ In this way, a genera-
o @

' d
lized relation between ¢;(z) and ¢ (z) is egtablished, which accounts for Wp
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This analysis, however, involves an assumption about the relation between the
total energy and the velocity, similar to (12). In addition, the relation between ¢ and
the shape parameter of the velocity profile is estimated only

5.2.2. Proposal of general treatment,

For general treatment of the problem of modified REYNOLDS analogy, a generalized
relation of the type (12) '

T %
= (;;, M;, @, K(w)) (119)

should be attempted, where the correcting function K () implies the direct . influence
dp dus

of —— (or ) and
dz

- The (mostly prevailing) indirect influence of these two
@

. . . oy s1s .
parameters is auntomatically considered with the sensibility of — to these parameters,
' s '

where the sensibility to is dominant. Hence, for moderate values of , it is

indeed justified to introduce K (#} as a correcting function, which may be determined
by a process of iteration beginning with K ® (z) = 0,

Therefore, we establish a form of (119), which becomes identical with (12), when
K (@) tends to zero :

T : % bE (z u \2
——=:a+b(1+1{(;g))«—+a(1— ( ))(-—) : (120
Ts ‘ Ug ¢ U5

The coefficients a, b, ¢ are functions of Ms and 9 only, as given with (13) (14) (15).

u
For — =1, we have

=1, as must be for 2 Praxprr number near unity.
s [

For determining K (), we need an equation additional to the two integral conditions
(81) (82).

This additional equation is given by the integral condition {(116). Though this
integral_' condition is physieally identieal with (82), the mathematical identity would be
achieved only when the exact solutions of T (z, ) or p (%, ¥) respectively, and u (z,y)

- are introduced. Now, sinee {120) is an approximation with the free function K (z), thig

function may be determined from the condition that both the equations (82) and (116)
are valid simultaneously. This leads to an equation for K'¥ (z) of the type

dus
dR® e | |
——+ K - o + ¢ =9 . {1z2n)
& ’ .

© _(0) L, . . , dus 1 4
where ¢1°, ¢3' , are known functions including the given functions Frai an
. 8
dTw 1

ae 1 '
—— (from -—— —) when the boundary problem (81) (82) was solved with the
de Tw . dex ©

assumption K©® (z) = 0. With X0 (), an improved relation for and for the local

-]
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heat tramsfer is obitained which writes
g (z)
4 uj

'If necessary, a second appronmatlon K® (@) may be procured by repeating the
boundary layer calculation basing upon (120). In general, the first iteration step will be
sufficient, since the integral ferms (67) (69) (71) (73) are not very sensitive to variations

=—-“i STe( + Km) (122)

of :iﬁ— near the wall. Indeed, the correcting function K essentially affects the .

Ts g

T ‘ ' ‘ :
wall slope (%—) , thus giving the required improvement of heat tranefer calculation. -
Y [ ‘

Numerial calculatmns according to the above idea of a modlﬁed Reynolds analogy
are prepared. The results will be reported separately.

6. Critical netes on hypersonic boundary layer surveys

6.1. Iniroducing remarks.

During the last ten years the hypersonic tunnel technique was developed to a high
completion in manipulating boundary layer surveys up to free stream Mach numbers
of about 10. :

Thus, experimental information abont the behaviour of turbulent boundary layers
st high Mach numbers and various heat transfer conditions at the wall was now
available from an increaging number of more and more refined measuring techniques.
There are some publications of this kind, namely those of Loss, WiNgrEr and Prrsa [11],
HiiL [6], WiNgLer and CHA [41], which have found special attention by authors who
attempted to improve theoretical approaches about compressible houndary layers with
heat transfer, These very difficult measurements provided extensive experimental date
about the velocity and temperature distribution, also very close to the wall, such that
parts of the laminar sublayer or at least of the buffer layer were included. From this
original test material, values of local wall friction and heat transfer rate have been
derived, essentially basing upon the assumption that the configuration of test points

1) T

permits to comstruct the wall slope (——g—) or (aay) respectively. In the case
Y Jw

case of the velocity distribution, a straight line course of « (y) between the point u =0

and the more or less averaged location of the last test points was accepted as an
adequate fitting.

As already indicated by Prof. Morkoviy, serious diserepancies between these results
for the local wall friction coefficient ¢; and results from available free flight experiments
{(Somuzr and SmorT [19]) on the one hand, and between credible theoretical derivations
on the other hand, gave reason to regard the experimental results of [11], [6] and [41]
with some caution. Under the following items 6.2 and 6. 3, we concern mth some features
which may be helpful in criticizing the mentioned discrepancies.

N e ,im_;,gx-.ii ARy

S
[
s

s A i

H
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6.2. Comparison of measured and caleulated temperature profiles.

The references [11] and [41] contain detailed numerical results for the velo-

(—;i) and the temperaturé profile

-]

city profile (%—) , hence, the relation

T % o
(——) s Ma, ®  for different free stresm Mach numbers Ms — M., and heat transfer

Tu: (L7

. . (Pr—Ty) . -
rate, characterized by the ratio —~——"" This ratio is related to the heat transfer
. r . : ‘
parameter ® used in our analysis by

1475y
6_T—Tu T—T, tre—gMe )
L P—Ts T, k—1 .

. r 2 M7

(Ts="To, us ==ty T, ="Te in [11] and [41])
where the recovery factor is » = 0,89.

- ¥
Since, according to test descriptions, the pressure gradient _Ep and the temperature

gradient may be neglected (in [11] a small favorable pressure gradient is

conceded), the relation (12) with (13) (14) (15) may be considered as a very acurate
solution of the energy equation. This relation was evaluated for the different Mach
numbers Ms (= M.) and heat transfer parameter © given in [11] and [41], and compared
with the corresponding experimental results. From the 29 measured and calculated

o P % , .
carves T ( M., 8), six typical curves from the two references vespectively
- U . ’ '

are represented in the figures 10 through 21. For ahout zerc heat transfer, the experi-
mental and theoretical curves agree very well, while with increasing heat transfer
(cooling), the eurves deviate more and more, exeept the wall and outer-edge points, In
‘the case of ref. [11] (Loes, WiNkLER, PrRrsH), the experimental poinis are lying below
the. theoretical result, in the case of ref. [41] (WINKLER, CHA), the experiments give in
. the average higher temperature than predicted by the (quasi-exact) theory. The
meaximum discrepancies are in both cases of the order of 20 %- The experimental curves

aa
T (——ti—) of [41] appear when © > 0, to be related to a higher Mach number,
o u’w . .

‘while the curves of [11] make believe that smaller Mach numbers are present. To give

an example : the experimental curve (—-——— for M. =818, 8 =10,536, fig. 15

@ U

re'semb}es very closely a theoretical curve calculated from (12) for M, = 5,55 and 6 =0,

Figure 10 to 21
. T u
Comparison of measured and caleulated temperature distributions — { —— }. Theory: thick ful lines,
- T 14 _
Fig. 10 to 15 experimental data from Loes, WIRELER, PERsH ref. =Ell]; f;‘ig. 16 to 21 experimental
data from Winkier, Caa ref. [41].
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The present writer does not find a plausible explanation for these discrepancies.
- It is, however, clear that the integral terms 3, 3; (displacement and momentum-loss
T

— 2 With the relations (67) and {69),

and Reynolds number formed with 3; may be noticéably-incorrect.

6.3. On the determination of local friction coefficients by experimental slope evaluation.

For cvaluating the wall slope at the velocity profiles, it is nsual to assume a- straight
line course of w (y} within the laminar sublayer. The outer edge of the laminar sublayer

is determined by the intersection point of a plot of

WUr
against the logarithm of the

wall distance }_;_ .

It is believed that this procedure of determining the wall slope involves remarkable
uncertainties, as is evidenced by the fig. 22 through 26, related to ref. [11] and fig. 27
through 29, related to ref. [41]. A plot in physical coordinates is chosen, from which
the accuracy of the experimental data and the fitting by a curve may be critieally
examinated in the best way.

_In these figures, the slopes recalculated from the values ¢; as listed in the summariz-
ing tables of ref. [11] and [41] (using the SvrmERLAND formula for y (T)) are drawn
as thin. ful lines, There exist, indeed, some difficulties to support these lines as an
adequate evaluation of the physical feature.

T ®
Tentatively — inspite of the probable uncertamty in the values —_ 4

’ a2

and Rs, discussed under 6.2 — the wall slope was calculated from the relatmn (35), baging

3
upon the measured values of 3;, (Bl)u, 82, (Z2)u Ra,, (5—1) = His and
. £/

3 (32)u
is drawn in the figures 22 through 29 as dashed-dotted line. Since, with regard to the.

fig, 10 through 21, 3; is obviously too small in the case of ref. {41] and too high in the
case of ref. [11], the calculated ¢; values may probably be incorrect by a factor about
proportional te 3> with the same trends [see equ. (35)]. From the figures 27, 28, related
to cases with small heat transfer and good agreement between experimental and theore-

. This slope

T ) : .
tical curves T (—), it turns out that the theoretical slope from equ. (35) may
o U

be regarded as a fairly good approximation to the real slope.

In all cases, however, the dashed-dotted slopes caleulated from equ. (85) are much
larger than the experimental slopes (order of 80 % and more, especially for values
€= 0,5). Higher ¢rvalues in the case of eooling of the wall (@ > 0) appear to he
supported by the free flight experiments of SouMMER and SuorT [19] and by the prediction

of some other theories, i e. the T-mcthod, as iy evidence by the figures 7 and 8 of the
pregent report.
As to the experiments of ref. [11], the conceded (thomgh small) favorable pressure
o dp

d .
gradient (_f{[ < 0) causes, due to the « wall condition » (-—-—) — ——, a deviation
dw : _ _ ‘ dy /o da
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+ from the straight line in direction to a more convex course of

(i). Thus, in the
. Uy \ & ‘
neighbourhood of the wall, there is in this case 4 reason more for the drawn theoretical

course of the wall lope.

Another physical fact that may influence the present congideration must be kept
in mind here. Wall cooling at high Mach numbers ag applied in the above discussed
measurements (and as case of most practical interest) causes a temperatore maximum
near the wall which in genoral lies within the laminar sublayer (see the figures 10

‘ ™\ b o
through 21). From (12) follows that this maximum (T)mx occurs for “ = 22 = 2
. o Uy ¢
and hags the value ' .
T K—1 1)
=1 MZ{1—0 + — 1243 -
(Tw ),m T ( +4) i

In the case of fig. 15 w"ith M, =818, ® == 0,536 (ref. [11]), evaluation of (124) yields

. 750 and = = 6,05
Ep—— = an, = 6,05,
T, max E T

Hence, the maximum temperature is abont 13 % higher than the wall temperature.
The related viscosity then varies within the sublayer about proportionally with the
temperature. For stronger cooling, for instance such that holds Ty =Ty (® =1), as
was present in some experiments of ref. [19], the maximum temperature for M, =25
is about fwice as high as the wall temperature. Now, when constant shearstress is

%
agsumed near the wall, the slope —gn_ within the laminar sublayer varies reverse

proportional with the viscosity, and « (y) has a turning-point at the location of T = Ty,
The theoretically predicted location of this turning-point is indicated in some figures

By this rough estimation it is evidenced that at strongly cooled walls, a straight- |
line course of u (y) may be a poor approximation and the wall slope obtained from such
an approximation may be noticeably wrong.

It is felt that a detailed theory on the laminar sublayer would be helpful in removing
_the present difficulties, as already suggested by Prof, Krsrin.

.Fieure 22 to 29
u

Experimental veloeity profiles ——- (y) from the referemces [11] and [41]. Criticism of walil-slope
’ . i
evalaation | ==—1] ., Thin ful lines: wall-slope recaleulated from c,~value given in [11] and [41]

: oy /w
respectively; thin dashed-dotied lines : wall slope caleulated from equ. (35), using the values &* = 8,

u .
and § = B, from [11) [41] and evaluating (3,), and (3o, from —— (. Thick dashed lines :

uﬁﬂ

u

estimated course of -—— () near .the wall, -@ caleulated turning-points in the figures 24, 25, 26.
u
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6.4, Nole on the empirical wall-friction law of Winkled and Cha, ref. |41].

From the foreoing discussion about the slope evaluation from boundary layer
surveys, we must conclude that information about the wall friction obtained in this
way must be regarded with caution. Nevertheless, a critical review on existing calcu-
lation methods for local wall friction data outlined in ref. [41] iz noteworthy. WingLEs
and CHA find that all known calculation methods are valid each ome only in a certain
range of Reynolds number, Mach number and/or heat transfer rate. Therefore, a new
empirical method of data reduction from compressible flow with heat transfer to incom-
pressible flow is suggested, whith gives a fairly good fit of all available measurements,
(which, as we now must believe, probably contzin more or less systematic errors, when
¢; is determined by wall slope evaluation). For incompressible turbulent wall friction
coefficients ¢;,'at a flat plate, the wellknown law of Scmvirz-Gruson [23] is accepted
as most convenient. It writes ;

0,0246 P e (8,)

3 Ry, = (b = o) (125) (126)
R(az)_u )

and is consistent with the law of Lupwime-TiLLmaws [4], equ. (24), when flat pla{'e
conditions are introdunced.

The values ¢; observed in compressible flow with heat transfer then may be related
to the values ¢, by the following reduetion formula :

T \ME LT, \l '
Cy — 127
“ c;‘( To ) ( T, ) ‘ (2%

The usefuluess of this reduction formula turns out from fig. 30, which iz a repro-
duction of the related figure in ref. [41].

Gjﬁ =

]
8

o &
n
% —] -0.251
@ GF; <0.0246 Re "
: \‘\—\:L. 8 Cp; » Cp xTo /T2 (T, /T, )% >
7] ' [ -ty b=
: . n N o °O$ o lCP = 80,0244 Réﬁ_— (Tﬂiﬂam w_” 1), <
£ R G 2
u 9
g ‘}%A-._ ﬁ,@cs%o | Ry s Solfass $ »
s O REF. (0] 5% Ma £ B2, 18Ty /T, 52 605‘5‘*9-70 5 W m
8 ¥ REF. {j) 2¢Mmt 4.5 T /Ty=l _ o‘%’"‘o*-t! Vo, - e
3 © REF. (k) Mms 8.3,9.0, Tp/Tys 179,18 : Q P L -
5 A REF. [u) Mg 2.43,06 % T,/T, 41 &Eﬁd-..._ 2
g2 Q REF. (v} Mgy 2.5, T/, 01 _ w
= D REF {w) Mg 58 ,Ty/Ty= 1 -
] & REF {x) Mg= 3.05,T,/Ty =1 brd

& PRESENT Mg=52, LI5ET /T, 6163 =

DATA
3 T -
04 06 o8 2 4 & a ‘ 20

0
MOMENTUM THICKNESS REYNOLDS NUMBER {Reg x 10-3) ; Reg= Sulad

Fiouns $0
The new empiireal law of WINRLER-CHA [41] for the local wall-friction coefficient P
reproduced from [41) and rewritten in terms of the present theory.
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It may be interestip.g to compare egu. (127) with the generalized wall friction
law (35), derived from (24). For this, we must introduce the Rrvvorns number Rs,
defined with (32). In addition we may write : i

for hypersonic tunnel expe-

pr "398 (T \02680 s 14 ‘4 riments of vef. 11, [41], and
(,,Tw) ~ ("T";) =~ (T‘;) P 080 <109 Gihers with nigh wall cool. (128)
. ing.
With (125), (128), and (32), equ. (127) may be rewritten as .
0,0246 / T, \3/+ o T Te
Op = Rgfm —T—o— : with —i—m e ™ because of » =~ 0,9) (129

and

147

This means that WiNnkLer and Cua have practieally introduced the local ReyNorps
number Rs,, equ. (32) (indeed, but probably not being aware of), which was suggested
by the considerations in chapter 3. The expression (130) may be compared with the

3 )
=, The difference between (130) and (90) is that (32-)
2)u ' 2
depends also upon the heat transfer parameter ® and the shape parameter H of the
velocity profile, while (130) does not. The latter fact is comprehengible, since the
inerease of ¢; with wall cooling (8 > 0) was not observed in the boundary layer surveys
of [11], [41], and others.

We do not intend to conclude that the empirical relation (129) supports the
definition (32) for Rs,. But it iy believed thut the relation (129) might be of interest,
though not all experimental data fitted by it may be considered to be rcliable.

( Tw )3/’4 1
T = _— | 3/4
©h ( “ M?},) (130)

e

analytical expression (90) for

7. Conclusions

Attempts to establish the similarity laws for turbulent boundary layers on the
field of compressible flow with heat transfer are hampered by uncertainties, Fecently
discovered in hypersonic boundary layer surveys. The present lack of reliable expe-
rimental information on this field stimulates engincering concepts about the bhehaviour
of compressible turbulent boundary layers. Such concepts are supported by reliable
direct measurements of gross boundary layer quantities like the averaged or loeal wal
friction forces and integral terms over the velocity distribution. The application of
integral conditions for momeninm and energy, combined with generalized laws for the
wall friction and dissipation (based upon approved laws from the incompressible field)
then appear to be a trustworthy way for predicting the behaviour of compressible
turbulent boundary layer with heat transfer and streamwise pressure gradient.

-In agrfeement with the consideration of Prof. Krsrixn, it is felt that for removing the
present difficulties in understanding the discrepancies between experimental resnlts
and theoretical or semi-empirical predictions, more interest must be centered on what is
happening within the laminar sublayer.
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LIST OF SYMBOLS
List of Symbols

Lengths
T coordinate along the surface
y coordinate normal to the surface
L reference length (for instanee : length of a ﬂat plate)
8 total thickness of the houndary layer
81 displacement thickness, equ. (67)
s momentum-loss thickness, equ. (69)
8;  energy-loss thickness, equ. (71)
34 density-loss thickness, equ. (73)
(31}“, (Ba)y (B3)y, (8‘&),“:i = ( quantities related to the pure veloc1ty profile, equ. {G8), (70),
(72), 74).
Z = 8.,(R5 )* thickness parameter of the two-parameter theory
Velocities
u x-component of the velocity » d
ug x-component of the velocity at y = 3§ :ﬁ;ﬁver?ge
v y-component of the velocity values
u, frec stream velocity
a;  sound velocity at local conditions (aty = &)
Forces
D static pressure aceross the boundary layer (p, ~ p)
T shear-stress within the boundary layer
Ty wall shear-siress
Temperatures
T temperature within the boudary layer (time averaged mean value)
Ts  temperature at y =3
T,, temperature at y == 0
T,  adiabatic stagnation temperature, equ. (12) for =0,0=0,r=1
Lo i
T, recovery temperature, equ. (19) “
Medium properties
2 density within the boundary layer (t1me averaged mean value)
ps densilty at y= 3§
i effective viscosity within the boundary layer (= molecular + eddy viscosity)
ws  effective viscosity at y =3
%, molecular viscosity at y =40
A heat conductivity
y specific heat at constant pressure
c, specific heat al constant volume
e
x —
[

k7

Dimensionaless quantities

M;

C]

== local MACH number
I3
T.—T,

= —T— heat transfer parameter
—Ts




Pa 125 By

Rz = ————— local REYNOLDS number formed with the local momentum-loss

e :
thickness §, [equ. (69)], outeredge quantities ps;, u; and wall viscosity .

R(S2)u = (Rﬁg)Ma =0, 0:==0

Ps U5 (32)4

Rtﬁ'.%]u =
s
R, REYNOLDS number formed with the flow length x and outeredge guantities
us; L \ '
B, = Fete REYNOLDS number formed with the reference length L and outeredge
[ ‘
guantities
8 .
H = (-8_3)“ shape parameter of the velocity profile (second parameter, besides Z,
‘ the two-parameter theory)
‘ 8
H, = ( ; )e = Hyp(H) other shape parameter of the velocity profile
2
c, =2 ™ __ local wallriction coefficient

g3 Wa®

: 3 x : :
Cp = f c.d I averaged friction coefficient
LH]

a(H,z)universal function in the wall friction law of Lupwiec-TILLMANN, equ. (24)
8(H,,)universal function in the dissipation law of RoTTA-TRUCKENBRODT, equ. (39);

B(H,p) = g = 0,0056 suggested by TRUCKENBRODT [25].

Sabscripts )
0 related to adiabatic stagnation conditions
o related to free stream conditions
3 related to y = 3 (outer edge of the houdary layer)
w related to y = 0 ‘ ‘ :
i rclated to incompressible case
u related to the velocity profile
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DISCUSSION DE LA COMMUNICATION DU Dr. WALZ

Itiro TANI, University of Tokyo

In Dr. WaLz's treatment [1] of compressible turbulent houndary layer problems, the
empirical formulae of wall friction and energy dissipation for incompressible flows are
‘used to obtain the gencrahzed expressions for compressible flows. The dissipation. formula
for incompressible flows is that pul forward by Rorra [2] and Trucksnsropt [3], but the
writer has felt some doubt about this formula in that the effect of the form parameter H
{ratio of displacement and momentum thicknesses) is unexpectedly small, in marked contras*t
to the case of laminar boundary layers.

From analysis of a number of existing experimental data, RuBerT and PrrsH (4] have
obtained a dissipation formula showing the dependence on both ReywoLps number and H.
By assuming LupwiEs-TiLLmann formula for wall friction and similarity of velocity profiles
of the form of velocity defect law, the writer [5] has derived from the momentum and
energy integrals the energy dissipation in a closed form, which indicated again the depend-
ence on both Reynorns number and H and yielded resulis agreeing fairly well with those
obtained by Rusertr and Persn. It should be mentioned that the Rorra-TRUCKENBRODT
formula is based primarily on a single experiment of ScHuBsAUER and KLEBanorr [6] and that
the wall friction as fonnd in this experiment is known to be too high. :
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Dr. MICHEL, ONERA, Paris

Je désire seulement faire une remarque concernant 1’évolution dn coeﬁ‘mlent de frotte-
ment avec la température de paroi. ‘

Dans les théories ey croit quand T décroit (cooled wall).

Dans les expériences de LoBB-WINKLER-PERSH et WiNkLER-CHA Cf décroit quand T, croit,

Le Dr. Warz explique cette différence par une mauvaise détermination de la pente
4 V'origine du profil des vitesses, dans l’expérlence

Je veux faire observer que dans les expériences en question Ie flux de chaleur a égale-
ment été mesuré; le résultat est qu'il déeroii quand T, diminue. Le coefficient de frottement
angmenterait donec pendant que le coefficient de flux de chaleur diminue, ce qui nous
éloigne dangercusement du concept d’analogue de REYNOLDS,

Des expériences ont été effectudes 4 VO.N.E.R.A. pour déterminer le coeflicient de frotte-
ment & partir de ’équation globale des quantités de mouvement. Elles ont comporié I'explo-
ration detaxllee de la couche limite sur un cylindre refroidi intérieurecment, la détermination

de &, ef de sa dérivée

qui donne le ¢, Le résultat confirme au nombre de Mach 2,6
.dx

les résultats des expériences du NOL. Le probléme de I'évelution du ¢, avec la température
de paroi ne nous semble pas encore résolu. Des expériences systematiques semblent encore
nécessaires.

23
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Réponse an Dr. WALZ i propos des résultats de mesure de frottement global

— Pour exploiter les mesures de frottement global, il est nécessaire d'estimer une
origine fictive de la couche limite et pour cela d’admettre une ceriaine évolution en faisant
appel & une ceriaine théorie. Or il n’cst pas prouvé actuellement que toutes les theéories semi-
empiriques ne sont pas en défaut dans le cas d'un flux de chaleur 4 la paroi. Seuls nous
semblent utilisables les mesures de frottement local, dont I'exploitation ne peut éire
effectuée que si la couche limite a pu y étre caractérisce d’une fagon précise, le seul nombre
de Reynolds dont on puisse éire sir étanl celui basé sur une ¢paisseur de la couche limile,
comme Pépaisseur de quantité du mouvement.



COMMENTAIRE DE LA SECTION
COUCHES LIMITES TURBULENTES

Professeur Hans W. LIEPMANN, Preésident

Turbulent boundary layers share with frce turbulence the intermittent surface hetween
{he turbulent and irrotatiopal fluid. The outer part of the boundary layer thus shows many
characteristics of free turbulence. The essential difference between free turbulent and
boundary layer flow is the existence of the laminar sublayer in the latier. The sublayer is
largely responsible for the dissipation as well as for the production of turbulent energy,
and progress in the understanding of turbulent layers will depend to a large measure on
futire work on the sublayer. A promising beginning in sublayer work has heen made.

Semi-empirical theories are successful in dealing with the overall behavior of turbulent
boundary layers and appear to be sufficient for most problems of engineering interest except
separation. Even in these semi-empirical approaches it is important to recognize the double
structure of the flow in the layer. Attempis to extend the phenomenological theories without
new physical ideas are valuable only if the result is a simplification of formalism and a
clearer demonstration of the assumptions and limitations. :

Experiments and theory show that compressibility effects in the turbulent boundary
layers up to Mach numbers of the order of ten are due mainly to the temperature dependence
of density, viscosity and heat conductivity. Compressible and incompressible boundary layers
are thus qualitatively similar and it seems possible fo relate the characteristics of high
speed boundary layers to a corresponding one in incompressible flow. The energy in the
acoustic radiation from the layer is too small to contribute markedly to the turbulent energy
balance. Eventually, ie. at a sufficiently high Mach number of the flow, acoustic radiation
must become an essential feature of the turbulence of the layer and qualitatively different
conditions will oceur. .

Here as in all other phases of turbulence research there exists a need for much more
experimentation. However, anybody who intends to embark on experiments must recognize
the difficulties involved. Experience has shown that it is by no means easy even to establish
a well-defimed turbulent boundary layer, in particular in an adverse pressure gradient.
Experience has also shown that quick — hit and run — experiments under badly controlled
conditions are worse than useless,

In an attempt to list a few more definite problems for future work one must recognize
that practically all problems of free turbulent flow are present in the turbulent boundary
layer and hence the list of free turbulent problems applies here as well. In addition the
following may be mentioned : ‘

¢) Space-time correlation measurements of wall pressure fluctuations and of the velocity
fluctustions within the layer have shown a characteristic propagation velocity of about
80 per cent of the free stream velocity. This characteristic velocity which is definitely
associated with the motion of large eddies should be obtainable from a stability theory of
the turbnlent layer. Experiments with controlled disturbances appear very promising here.

b) Measurements of sublayer flow at high Reynolds number are possibly the single
most important field for experimental work in turbulent boundary layers. The difficulties
are obvious and a great deal of ingenuity is required to find. suitable installation and
measuring setups. At least a working hypothesis on sublayer flow has now been developed,
and this should help very much in formulating experiments.

¢) Most spectacular but of less immediate importance would be the demonstration of
turbulent boundary layers with acoustic radiation sufficient to alter the emergy balance,
The question of the existence of truly supersonic turbulence is after all still open.





