SECTION

TURBULENCE LIBRE

FREE TURBULENCE

President : Professeur H. W. LIEPMANN



FREE TURBULENT FLOWS

Hans W. LIEPMANN

California Institute of Technology
Pasadena. California

1. INTRODUCTION

Le monvement d'un fluide incompressible non visgqueux imitialement irrotationnel, et
dans un champ de forces conservatrices, restera irrotationnel, excepté pour les surfaces
de tourbillens concentrés.

Ces surfaces de discontinuité doivent provenir de parois solides. '

Le champ d’4¢tudes du comportement de ces surfaces de discontinuite dans un fhude
réel peat étre appelé le champ d’écoulement libre laminaire ou turbuleat.

Dans une telle étude, I'effet des surfaces solides responsables des nappes tourbillon-
naires est expliqué par les seules conditions initiales de volume; par exemple par le champ
{d’écoulement libre laminaire ou turbulent.

Ces derniers dépendront souvent i leur tour (mais pas toujours) du mouvement libre
Ini-méme; mais Pétude de cette interaction est généralement considérée comme un domame
sépare, et les paramélres de volume sont obienus par Vexpérience si nécessaire.

I.e nombre de Reynolds caractéristique d'un écoulement particulier est formé avec ces
parameétres. L’écoulement laminaire libre est possible quelgue soit le nombre de Reynolds.

Pour les nombres de Reynolds éleves, la théorie de la couche limite est. applicable &
Pécoulement laminaire libre & une dlstancc suffisamment importante des surfaces solides
génératrices.

L’écoulement turbulent libre évidemment se produit seulement pour des nombres de
Reynolds élevés.

I1 est remarquable, c'est-a~dire pas du tout évident, que les écoulements libres turbulents
présentent aussi une sorte de comportement 4 couche limite, dans des conditions analogues
4 celles que prennent les écoulements laminaires libres.

Pour les écoulements laminaires ceci peut éire présenté comme une conséquence des
equatmns du mouvement. Paur un écoulement turbunlent, c’est un résultat essentiellement
empirique, et il est, ¢quelques fois an moins, difficile de fournir un argument convaincant
montrant que c’est. un résultat possible, c'est-d-dire compdh.hle avec les equatmns du
mouvement.

1l existe suffisamment de preuves expérlmentales pour montrer qu’il est possmle de
considérer la transition vers le régime turbulent séparément, c’est-a-dire qu'il semble possible,
4 un nombre de Reynolds suffisament élevé, de produire un écoulement libre turbulent qui
ne dépend pas du processus de transition ou de localisation de la zone de transition.

Cet énoncé n’exclut pas bien sir, Pexistence d’écoulements expérimentaux pour lesquels
la transition influe sur I’éconlement dans la région turbulente.

Les types les plus simples d’écoulements turbulents libres sont :

1) la région de mélange provenant d'une surface plane de séparation entre deux écou-

lements paralléles, de vitesses différentes, mais d'égale presswn stat1que moyenne.

2} le sillage.

3) le zjets. ‘ : 2
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Le premier cas pouvant &tre considéré comme un cas limite spécial soit de 2, soit de 3,
pour un écoulement plan.

La différence essentielle cnire les écoulements libres turbulents, et Ies couches limites
turbulentes, est 'absence d’une sous-couche laminaire daus le premier cas. L'écoulement est
libre en ce sens qu'aucun rotationnel nouvean n’est formé an cours de son développement.

On a cependant plus de raisons d’espérer pouvoir formuler des lois de similitude
asymptotiques, dépendant seulernent des paramétres de volume caractérisant Idcounlement.

Il semble que ce soit le cas inconditionnel pour lequel on posséde suffisamment d’expé-
rience,

. Je veux encore insister sur le fait que, méme ces lois de similitude ne sont pas tellement
¢évidentes et nettes pour qu'aucun probléme ne subsiste.

1. Introduction

The motion of an inviseid incompressible fluid, initially irrotational and in a
field of conservative forces, will remain irrotational except for surfaces of concentrated
vorticity. These discontinuity surfaces must originate on solid boundaries.

The field of study of the behavior of these surfaces of discontinuity in a real fluid
can be termed the field of free laminar and free turbulent flow. In such a study the
effect of the surfaces which are responsible for the vortex sheets is acconnted [lor
by bulk initial conditions only; e. g, by the nect forces, the net momentum discharge
or the net total flux of vorticity. These in turn will often — but not always — depend
upon the free motion itself, but the study of this interaction is nsually counsidered a
separate field, and the bulk parameters are if necessary obtained from experiment. The
Reynolds number characteristic of a particular flow is formed with these bulk parame-
ters. Laminar free flow is possible for any Reynolds number. For large Reynolds num-
bers, boundary layer theory is applicable to laminar free flow at a sufficiently large
distance from the originating solid surfaces. Turbulent free flow occurs of course only
at large Reynolds numbers, It is remarkable; i, e., not at all obvious, that turbulent free
flows should also show a kind of boundary layer hehavior under similax conditions as
do laminar free flows, For Jaminar flow this can be shown as a consequence of the
equations of motion; for turbulent flow this is essentially an empirical result and it is
sometimes at least not easy to give a convineing argument that it is a possible result;
i. e., compatible with the equations of motion.

There is sufficient experimental evidence available to show that it is possible to
consider the transition to free turbulent flow separately; i.e., it seems pussible at a
sufficiently high Reynolds number to produce turbulent free flows which do not depend
upon the transition mechanism or the location of the transition zone. This statement
does not preclude of course the existence of experimental flows for which transition did
affect the flow in the turbulent region., - ‘

- The simplest types of turbulent free flows are : (1) the mixing region originating
from the plane interface between two parallel flows with different velocity but equal
mean static pressure; (2) the wake; (3) the jet. Case (1) can be considered a special
limjting case of either (2) or (3) for plane flow. '

The essential difference between turbulent free flows and turbulent boundary
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layers is the absence of a laminar sublayer in the former. The flow is free in the sense
that no new vorticity is generated in the course of its development. One has more
reason therefore to hope that asymptotic similarity laws, dependent only on the bulk
parameters characterising the flow, can be formulated. Thig does seem to be the case
under all conditions for which sufficient experiments are available. Still, I like to
emphasize that even these similarity laws are not so obvious and clear-cut that no
problems remain,

~ 2. Similarity and mean-velocity profile

The simplest case which exhibits the similarity of the flow variables is the mixing
zone, Let U; and Uy denote the mean veloeity at @ = — w0, A thin plate separates the
streams np to # = 0, at which point the interface begins and extends toward + o0 3 the
interface lieg in the #2 plane. ‘

If we agsume that for suﬁlclently high Reynolds numbers the flow becomes completely
independent of the viscosity, it must be comical; i.e., all dependent variables must be
consant. along rays from the origin and can depend only on the angle § —tan—?! %.

This is the usual and qu1te natural assumption for semi-empirical theories and for
representing experimental results. However, strictly speaking, such a flow is not possible
in steady, subsonie motion. It is impossible to match a uniform flow to a comical region.
This does not seem to be serious, since one really does not expect the wedge-shaped
mixing zone to extend to infinity. However, difficulties like this sometimes indicate an
unduly pronounced influence of boundaries in experimental setups, or an unexpectedly
strong interaction between the free layer and the flow upstream, or finally the necessity
for non-stationary flow. |

If we accept conical flow and a boundary layer form of the equation, we obtain a
relation between the mean shear = and the # component of the mean velocity « in the

form )
n .
f Wi =10 | (1)
/.

The two usual assumptions for the form of = are :

where v (1) == 0.

t=¢ (d—) Prandtl-Tollmien (Mixing l,ength ~ &) (1a)
U] ‘
7="%¢ IUl —U2| —— Prandtl- Gortler (Exchange coefficient ~ ) (1)

The resulting differential equatmn for u is in both eases of third order and hence requires
a boundary condition on the normal component v which is not unique unless the boundary
layer solution is matched to a solution of the equation at infinity. Different assump-
tions here tilt the wedge-shaped region about the origin; e.g., one could demand
v (0) =0, cor respondmg to the perturbation scheme about the undisturbed interface.

. Ui+ T
However, Tollmien assumed o (+e) =0, and Gortler % (0) = __.__.5.........; none of these

&
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asumptiox;s affect the comparison of the computations with the experiment enough to
cause concern, but in principle the question is left open.

. du \? ‘ B .
With 7 ~ (‘&T) s (1e), the velocity profile terminates with discontinuous second

derivatives along two rays at finite aﬁgles; i.e, one obtaing a quasi-hyperbolic result.
‘ du ' :
The asgumption 1 ~ o (10}, leads to a profile which approaches the uniform velocities
.

asymptotically. These general differences between the results from the two standard
forms of ¢ are the same if applied to the other types of turbulent free flow.

. The behavior is easily demonstrated if one approximates to Eq. (1) by replacing « in
the integral by the inviseid solution : '

u =T, % (Uzs— Uy) H (n)

The resulting equation is linear and easily solved. The velocity profile obtained is a
third degree polynominal if (Ta) is assumed, and an error Tunction if (1%) is assumed,

The sharp cut-off which results if the original mixing-length concept is applied,
: du :
together with 4 minor difficulty near e =, was a canse of concern and led Prandtl
: - "

in 1942 to propose the use of an exchange coefficient or eddy  viscosity proportional to
the width of the mixing zone; i e, to a linear relation between shear and rate of strain.
Both concepts, the mixing length and the constant exchange coefficient, were suggested
from an analogy with the kinetic theory of gases. The former concept is obviously
modeled after the mean free path concept, the latter it similar to an often useful heuristic
description of rarefied gas flow; i. e, flow in which the mean free path becomes of the
order of the macroscopic characteristic lengths of the problem.

The analogy with the theory of kinetic gases can be and has been criticized. It is
however interesting to note that the discovery of the intermittent and double structure
of free turbulent flows removes the objection raised against sharp cut-offs, and at the
same time makes it clear that a description of the whole, time-averaged flow hy a
simple expression for 7 cannot do justice to the physical problem. 8till, the fact remains
that the concept of an exchange coefficient, in particular, is highly successful in the
application to free turbulent flows as well as in the outer part of the boundary layer,
Relating the stress and the velocity gradient iz mainly ecriticized because it assumes
“ gradient diffusion ”; i. e., diffusion determined by conditions in the neighborhood of a
point, While the concept of the exchange coefficient or the mixing length doubtless
originated from a gradient-diffusion model, the resulting expression does not necessarily
imply this. Indeed, Narasmvma (1961) has recently shown that the process of collisionless
diffusion of gas clouds into vacuum can be rigorously interpreted as a diffusion process
of the gradient type with a diffusion coefficient proportional to time; i e., precigely the
same form of expression as used in Prandtl’s second formulation of the free turbulent
exchange. ‘ : '

Looking at the phenomenological approaches today, T feel T have to retreat somewhat
from the position I held previcusly, namely that their time has passed. It now seems
to me that, recast and reinterpreted in relation to recent results both in turbulence
and in the theory of fluids, they still have a future. '
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3. Intermittency

The single most important experimental finding in turbulent shear flows is the
discovery of the existence of coherent regions of nearly homogeneous vorticity fluctuations
separated from the rest of the fluid by sharply defined interfaces. In free turbulent
flows this phenomenon is nsually termed ©intermittency”, following Townsend. In
this sense it was first observed by Corrsiy (1943) ; however its importance and significant
features were only recognized later by Townsexp (1949) and Corrsin and KisTrLER (1954).
The consequences of the observations can be explored in two directions. The intermittent
occurrence of turbulent regiony near the edge of a shear flow, besides altering the
evalunation and interpretation of measured mean values of the flow parameters, demon-
strates a large scale superstructure imposed upon a fine secale turbulent flow. It is clear

that intermittency is a feature which has to be incorporated into any theory of free
turbulence.

On the other hand, the existence of the sharp interfaces itself presents a very
interesting and far reaching problem. Tt is indeed quite common and oceurs in Charters’
zones of contamination (CuarTErs, 1943), in Emmons’ spots (Emmoxs, 1951), in the

turbulent slugs studied by Rorra (1956} in pipe flow, and in the spiral turbulence of
Coves (1960).

4. Turbulent interfaces

The motion of turbulent interfaces and the fluid flow in the neighborhood of such
interfaces stands out as a relatively new and by no means solved problem in turbulence.
The subject will be discussed in a special lecture by Prof. Cores. Here I will stress only
a few points of immediate interest to free turbulent flows.

First of all, one may formulate a general problem as follows : Con31der a flow field

(@ (i, £) such that u = grad ¢ at y =+ ; T—curlwisa stochastically known function
aty=-—c0;eg, 5, E(x,¢) E (X v,t 4 1) etc. are known and independent of ¢. How
much can be said about a flow field with these properties and what are the restrictions
for its existence ? In particular, experience shows that the region of vorticity fluctuation
ig bounded by a sharply defined surface. How does the existence and motion of such a
surface follow from the equnations of motion ? For example is 2 mean motion necessary ?
Is o mean vorticity field neccssary ?

To my knowledge little if anything is known about the general problem, which by the
way hears a striking, but superflclal similarity to certain problems of shock waves in
trangonic flow.

As in the shock wave problem, one may first study the properties of the flow im
the neighborhood of a given plane interface. Turbulentnon turbulent interfaces have
been observed in pipe flow, where they are essentially normal to the direction of mean
motion, and in intermifteni free turbulent flows, where they are essentially parallel to

the mean flow. Here I will mainly discuse the latter in relation fo intermittent turbulent
flow, ‘

The simplest model to be discussed assumes a statistically homogenecus field of
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vorticity fluctuations for . < 0 which is separated by a plane interface in the &1, @3
plane from irrotational fluid at #; > 0. There must exist velocity fluctuations induced
by the random vorticity field, in the irrotational flow us well, The irrotational velocity
fluctuations are-thus statistically homogeneons in any plane #; = constant and, as
Coresiy and KisTLer (1954) have shown, this leads to a number of general relations for
the mean values of the irrotational velocity fluetuations and their derivatives, In
irrotational flow of an incompressible fluid C '
| | ul?

-

div a4 =— grad

Hence the forces due to the Reynolds stresses are equivalent to .a pressure gradient;
applicd to fluctuations which are statistically homogeneous in @, and &3, this implies

@ = 2 luP
Uz =
(el ome 2

or _ =
uf = i + ud

To obtain the details of the irrotational fluctuations one has to solve the equation
V% ¢ =0 for given stochastic bowndary conditions in the plane #; = 0; i.¢., one has to
solve VZ¢d =0 for an upwush distribution » {#1, @3, ). This problem was solved by
Prriiees (1955) using a gpectral representation of the upwush field. The solution for the
velocify fluctmation of course agrees with the general hehavior noted above and in
addition shows explicitly the deeay of the fluctuation with distance from the interface,

This decsy iz algebraic and of the form 'Zc;a ~ @3~ ". The exponent # depends upon the
conditions imposed on the flnctuations at the interface. For example, if the tofal source
strength is assumed to vanigh, then » =4, This can be seen easily in the following

way : the irrotational velocity fluctuations # (5, 1)} are related to the upwash field
v (.?, t) by Rayleigh’s formula -

) - 1 d-—b (—b t) r
W= - $ V{8 et
I ‘ s

. - . - — -+ - =
where g is the position vector in the @z = 0 plane, and r — z — ¢. The tensor # % ig then

related to the correlation function ¥ (f) of the upwash distribution by

== 1 e g
W= — ds ds’-T(1
472 _[f ae @ r3 ¥

with [ = s — ¢ To obtain the asymptotic behavior of wu at large distances from the
interface, develop W into a series of 3 functions;

11?(3):55[“(5’)_+1;. 35'+r 2% +]

ol 2l ol

The vector B is zero because of symmetry, ¥ (f)' =¥ (— f); A vanighes if one assumes
zero total source strength. The function W is then determined by the tensor T' which is
proportional to the moment of inertia of the correlation ellipse of the. upwash, The
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quantity ' has the dimensions (length)?, hence ;L—;LW;JEP{EQ —4, The character of v is

dipolelike; the mean square of the components of w is given by a superpomtmn of
dipole distributions.

The complete form of " : t-large'distancés is given by

— '2 . = .
el fan(5 ) (24
T4 k 8 o8 Q8 r?

If the coordinates @; and 7 coincide with the principal axes of the correlation ellipse,

1 s diagonal, i e. no Reynolds stresses are produced in the potential flow as discussed
by STEWarT (1956). :

All these computations are quite straight-forward : however, the choice of realistic
assnmptions for ¥ and the comparison with experiments are much move difficutt. Tf is
not obvious, for example, that the source strength c¢an always be chosen zero. The large
geale motions of the interface ag encountercd .in experlments allow only a comparison
with theory close to the moving surface it only fluctuations in the potential region are
measured, or very far away from the moving surface. This simply reflects the existence
of two different scales in the fluctuations. The interface c¢an be considered plane at
digtances large compared to the Jarge seale motion, or close by, where the curvature due
to the large scale motion is negligible. The applicability of the asymptotic results to the
latter requires that the largest scale of the small-scale motion is still much smaller than
the smaller scales in the ¢ big-eddy » motion. 'This is a stringent requirement and 1L believe
that the agreement between the computations and Townsend's measarements in the
wake quoted by Phillips is largely fortuitous. One may add here that a randem whipping
of the wake as a whole contributes a sources term in the dnalyms and henee has a
pronounced effect on the measurements.

The matching of a pot(,n’ual flow field to an upwash distribution on a plane or
slightly curved surface is in essence equivalent to the lnmping together of the vorticity-
fluctuation effects into s source sheet, which then represents a fluctuating displace-
ment thickness. This approach is very useful in describing the fiow at large distances
both in the potential fluctuation problem and the corresponding acoustic problem
(LispMaxy, 1954), but it is not capable of describing the fluctuation near the bulges of
the sloshing interface. The velocity tield close to the interface can be obtained, at
least in principle, by computing the induced velocity field from the vorticity fluctuation
in the volume bounded by the interface. The velocity is then given by

1 - .-“‘;ﬁ-l'-i
f P (s, )
4% r

where £ denotes the instantaneous vorticity at a point with radins vector ;, with

- - - -

% = eurl

Tr=—8.

The vorticity £ is nearly statigtically homogeneous on one side of the sloéhing inter-

face and zero on the other. This behavior can he expressed by writing for £ - s



E=ow(st)His—0)
where w is the homogeneons vorticity fluctuation, H the Heaviside. funetion, and ¢ a
random vector. :

The velocity correlation can thus be written :

=1 7oL L eXr o X
U=~ || dsds HH
R’ mz_[f TR
The position of the interface and the field o will be nearly statistically independent, and

hence the quadruple correlation in the integral splits into a product

= 1 ds ds’ A
— _ , HE
% U % T © (@ ]

The integral formally expresses the remarks madc above. There are two scales involved,
A and A, say, corresponding to the © and H correlation respectively. Hence there iz the
possibility for fwo far fleld cases, i.e. for hgr«A and A«r.

One can simplify the integral by noting that the switching on and off of the vorticity
field, expressed by H, has the character of Rice’s “ random telegraph signal . The
correlation function can then be represented by '

! = —ex — e ————
g P A

where 7 is the unit vector normal to the mean interface plane. (Corrsin and Kistrer
(1854) have made very similar assumptions and provided s partial experimental check
on them.) For the far field one can again use development in & functions like the one
used in the discussion of Phillips’ model ; even 80, the detailed expressions become rather

messy because the o correlation involves fourth derivatives of the ¥ function.

4 final remark may be made concerning the mean flow near the floshing interface.
The veloeity within the bulges but outside the imterface must be potential, but not
necessarily parallel and equal to the flow at infinity as assumed by Corrsin and Kistler.
STEWART (1954} has pointed this out correctly: his detailed sample computation on this
- point, ‘however, is not convincing, since it stretches a linearized solution too far. The
interface is certainly not a stream- or path-surface, since the growth in width of any
shear flow requires fluid entrainment. Hence the < jump condition » for particles
“crossing the interface becomes important.

5. The stability of “ turbular ” fluids

It is very tempting indeed to consider the fine scale turbulent motion in a particular
fluid, call it « turbular », in the light of the observed large scale structure and instability
of the motion of such a fluid. I mentioned a point of view like thig in a survey paper
‘about 10 years ago (LiePmany, 1952), but recent work, e.g. Roshko’s observation of a
Karman vortex street at a ‘Reynolds number of ten million (Rosrxo, 1961} tends to
confirm the usefulness of such a heuristic view. Furthermore, whenever a stability
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computation of a laminar shear flow has been made, the ratio of ecritical wave.length
to width of the shear region has turned to be large (of the order of ten) regardless of
the details of the shear region. This fact again suggests the possibility of a separate
treatment of the large-scale motion and its relative lack of sensitivity to the details
in the shear region. Therefore I want to dwell on this point in somewhat more detail.

First of all it is clear that in searching for oscillations capable of representing
intermittency or vortex-street behavior in a turbulent flow one must end up with a
model somewhat like a non-linear oscillator with a limit cycle. The damping of any
perturbation and/or the amplification must be a function of the perturbatlon amphtude
or energy. In the only detailed model of free turbulent flow, the * big eddy structure”
of Townsend, this has been attempted and, for the particular model chosen, accomplished.
However, I want to stress the relation to ordinary laminar instability a little more
and to emphasize the details of the large-scale structure less.

. In the present interpretation, Townsend’s approach iz very closely related to
some corly work on laminar instability by the use of the energy method. The stability
problem is determined by the ratio of two infegrals, often denoted by M and N;

M:_—fd\’pf;;' gradfT'

N= de?-grada

Here  denotes the perturbation veloeity field, U the mean flow field, and r the viscous
shearing stress.

M ‘
The ratio N -is proportional to a characteristic Reynolds number of the flow, R.

The motion becomes unstable when reaches unity and this condition determines the

critical Reynolds number. Numerical values of such computations have been obtained

for a few simple cases of two-dimensional flow. The crlhcal Revnolds numbers obtained
are low, of the order of 100 or less.

Translating the same approach to the turbular fluid, we have only to interpret v as
the apparent shearing stress due to the small scale motion; indeed, by splitting the
velocity field into three contributions U, v and g, say, one can obtain the result formally.
(The form differs slightly from the one used in Townsend’s book.) If we now use the
exchange-coefficient concept it iz elear that the stability criterion will simply lead to
a value for R; i. e, a Reynolds number based upon the exchange coefficient and the
local width of the free turbulent zone.

If the i_ntegrals are evaluated on the hasis of a particular choice for the perturbation
motion ome can obfain a numerical value, somewhat dependent on the particular
perturbation chosen, for the constant. Here as in the corresponding laminar case the
problem should be handled as a variational one. It is however interesting and, I believe,
not entirely fortuitous that the values obtained by Townsend are of the same order of
magnitude as the laminar ones. However, for the turbular field we need more; namely,
we have to limit the amplification. In detail, of eourse, this is a very complex non-linear.
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interaction due to the dependence of the correlations and therefore of the apparent
shear on the velocity derivatives of the larger-scale motion. Thus — within the frame-
work of a heuristic model — the turbular fluid is non- \Fewtoman the viscosity increases
with the rate.of struin and is not a simple sealar.

It appears interesting to earry the concept of such a fluid still further. For example,
the extension of concepts liKe the ones used in irreversible thermodynamics may serve to
define a quasi-entropy and a quasi-temperature. These concepts should be intimately
related to the general question of irreversible energy transfer to the turbulent motion;

i e, what are the conditions for which © grad  is positive definite. If t iy the ordinary
shearing stress this is obviously so as long as p is positive, For turbulent flow it is
not mecessarily true in general and it is quite an interesting problem to inquire into
possible conditions for which r grad % can be negative; i.e.,, for which energy is fed
back from the fluctuating into the mean motion. Casges like this seem to require more
organized fluctuations like the modes in the early stages of laminar instability. Con-
versely, one may be able to define “ true ” turbulence; i.e., the random energy content
of such a torbular fluid, precisely by an irreversibility condition requmiring the positive

definite nature of terms like v+ grad #. One can find here some similarities with the
behavior of matter at low temperatures, but it seems premature to discuss relatively
unfounded speculations here.

Experiments have shown that the mean-temperature profiles in free turbulent flow
are always wider than the correspording velocity profiles. Both the spreading of heat
and the spreading of momentum must be limited by the position of the interface, since
the effects due to viscosity and heat conduction are too small in the teynolds-number
range of interest. Hence the mean-temperature profile can be wider than the mean
velocity profile only as a result of effects within the near]y ‘homogeneous part of the
tarbulent flow. The faster spreading of heat compared to momentum is thus a property

of the * turbular fluid ”. The characterigtic differences in the ratio of heat diffusion

to momentum diffusion found in plane flows compared to axially-symmetric flows
demongtrate the difference between the transport of a scalar and a vector, a faet first
shown explicitly by G. L. Taylor in his vortieity-transport theory. The experimental
results here are very important as a basis for attempting to formulate a phenomenologl
cal transport theory of the “turbular fluid " in _general.

6. The importance of the early stage of tt_u-bulent shear flows

The discussion has so far been restricted almost entirely to the asymptotic behavior
of free turbulent flows, the region far downstream where the flow is similar (or self-
preserving). Except for some (probably) minor problems noted before, such flows are
compatible with the equations of motion and certain features agree well with the
available experiments. There exist experiments, and also general considerations, which
tend to show that the largescale fluctuating motion in turbulent shear flows does
depend on the early stage of developmeni. The measurements of Rosaxo (1954) on the
development of turbulent wakes from vortex streets and some recent work by Graxc (1958)
suggest the importance of the vortex street for the large-eddy structure or intermittency
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in the fully developed wake. Quite recently Kistips (1961) bas shown that even turbu-
lence decay behind a grid depends murkedly on the wake-producing bodies making
up the grid. All thege results are not quite unexpected, since it follows gquite generally
that changes in any large scale structure in turbulent flow are slow (e.g. BarcrE-
LOR, 1953) ; still, the term “ slow ” hag been made much more precise by these experiments,
and the disappearance of the original organized structures has been shown to be very
slow indeed. In terms of the instability picture this means that the original organized
motion, such as a vortex street, leads to a far more selective choice of- possible unstable
modes than pure random formation of large-scale structures, Experiments here would
be very important indeed. Compansons of three-dimensional and two-dimensional wakes
have not been made in detail. Two-dimensional wakes, with and without the suppression
of the original vortex street by the use of a splitter plate, should also be studied.
Similarly, it should be worthwhile to trace the relationship of the organized fluctuations
existing in jets near the exit (WinLg, 1958} to the fully developed flow downstream. A
re-study of the mixing zone from this point of view is also worthwhile, because here we
deal with a single vortex sheet only. To conclude this particnlar section, I want to
discuss “ mathematical experiments ” on vortex-street formation performed recently by
AsrrNaTRY and Krowatrr (1961)* Two plane vortex streets a distance h apart are

—U STEP O
e R b = e e o =
U/uU =004
-+

STEP 50
U/u=.026

STEP 100
U/U0=.097

FlG‘UREl i _

* I am much indebted to Drs. Asgmyarsy and KRI)NAUEH for supplying me with these figures
from their unpubhshed work. o
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FIGURE 2

represented by a finite number of potential vortices. These vortices are perturbed hy an
antisymmetrical wave of wavelength a at ¢t = 0, and the subsequent motion is followed
in detail on a digital computer. This procedure if necessary represents mathematical expe-
rimentation on Karman’s model of vortex streets and vortex-street stability, The motion
depends strongly on the ratio h/o — in agreement with Karman’s original theoretical
work — and T find it faseinating and highly instructive simply to study the resulting
occurrence of what Abernathy and Kronauer call “ clouds " of vorticity. The first set
~of figures (Figs. 1 to 3) shows the development of the “ gtreet ” for Karman’s “ stable "
ratio of h/e = 0.28. The incrense of the distance between the center of gravity of these
clouds of vorticity and the dispersion of vorticity around the C. G. is evident — and this
without viscosity ! Furthermore, the resulting confusion of the gseparate vortices is so
large that after a while it is impossible to trace a distorted sheet throuegh subsequent
vortices, even with only 21 vortices per wavelength. Another sample of these experiments
is shown in Pig. 4, where the ratio h/@ has been chosen smaller; h/a = 0.17. Here the
clouds of vorticity form much faster — as expected from Karman’s analysis, However,
another striking feature is the tendency to produce additional small clouds of vorticity
near the center, between the original sheets. Note also the tendency for one vortex
sheet to be wrappd around the other, resulting in the appearence of both positive and
negative vorticity within the same limited cloud. The similarity of this computed model
and observations by Homan is shown in Fig. 5. The similarity of the pattern to sha-
dowgraphs of turbulent wakes is also quite obvions.
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FIGURE 5

These patterns, which already show a nearly random smallscale structure within
an organized large-scale structure, result from nothing more than a relatively small
uumper of line vortices attempting to rotate about each other. Remembering that two-
dimengional vortex motion is'so much simpler than general vortex motion, one gets here
a fascinating glimpse into rapid randomization by vortex interactions and a demon.

stration of the statistical character of turbulence proper !

7. Detailed description of the “ large eddies ”

1 want to add lere a few remarks concerning the choice of definite sttuétures to
describe the large-¢ddy motion. Attempts to de so are of course not new. It always looks
attractive to conmsider at least part of the turbulent flow as an ensemble of definite
-structures. Synge and Lin, for example, discussed in detail an ensemble of Hill vortices
to represent turbulent flow. Theodorsen introduced the horseshoe vortex as the standard
element of turbulence, and Townsend and Grant have attempted to fit a particular eddy
_structure to the measured two-point correlation function in wake and boundary-layer
flows. -

These models all have their use in focusing attention om certain basic phenomena ;
in particular, the fundamental phenomenon of vortex stretching can be followed in some
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detail with suck models. I do not believe, however, that these models will ultimately
remain in any final theory of turbulence. The success of the spectral representation of
turbulent fields is due, after all; not to the belief in the existence of definite waves but
to the possibility of representing quite general functions as Fourier integrals. In the
application to sfochastic problems the usefulness of the Fourier represent.mon stems
essentially from the translational invarianece,

COnbequently, really successful models for represe,ntmg turbulent shear flows will
require far broader invariance considerations. It is clear that the essence of turbulent
motion is a vortex interaction. In the particular case of homogeneous isotropic turbulence
this fact is largely masked, since the vorticity fluctuations appear as simple derivatives
of the velocity fluctuations. In general this is not the case, and a Fourier representation
is probably not the ultimate answer. The proposed. detailed models of an eddy structure
represent, I believe, 2 groping for an eventual representation of a stochastic rotational
field, but none of the models proposed so far hag proven useful except in the descmptwn of
a bmgle process.

8. Remarks on experiments

In a field like turbulence it is still difficalt of impossible tfo define uniquely the
decisive parameters to be measured accurately. Consequently, experiments on turbu-
lence carried out without a point of view or working hypothesis are most often useless,
since it is more than likely that immaterial and non-universal parameters will be
measured. Because of this state of affairs it is unlikely that a definitive set of expe-
riments for any flow configuration can be made once and for all. Measurements on the
gsame configuration have to be repeated occasionally when a new idea shifts the point
of view. The cxperiments on free turbulent flow which have been made so far reflect
both a changing emphasis and a development of new techniques. In the early experiments
the mean-velocity distribution and its relation to the mixinglength theories was the
primary interest. The next set of experiments attempted a clarification of the exchange
parameters and of ihe turbulent energy balance. The discovery of intermittency and of
turbulent fronts during this time removed much of the basis for the comparison in the
first stage, but did set fhe scene for the next one. It seems to me that the double
structure of the turbulent flow is basic for future experiments. We have to deal now
with a nearly homogeneous but non-isotropic small-scale turbulent field, with a large-
scale motion which has the character of long instability modes, and with interfaces.
There are at least a few problems for which these three patterns can be explored
separately. For example, the development of Reynolds stresses and of turbulent heat
fluxes in strained homogencous turbulence is a problem which requires much further
work ; in the terminology used above, it amounts to an experimental determination of an
equation of state and of transport parameters for the turbular fluid. It is quite possible
that such a study would require very bigh Reynolds numbers to be significant.

In a study of the largescale motion it seems to me definitely worthwhile to include
the growth and decay of artificially induced perturbations. The Schubauer-Skramstad
experiments have taught us this necessity for a study of instability in laminar flow. The

same idea, but not necessarily the same techmque, should be applicable to turbulent
shear flows. . ¥
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« In the following lecture Prof. CoLrs will attempt (o give a coherent representation
of observations on interfaces under various flow conditions, The necessity for studying

interfaces as a separate, highly interesting ingredient of turbulent flows seems to me
clearly demonstrated in his contribution.
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DISCUSSION

Professor I. Taxi. - In connection with the large-eddy problem, I would like to refer
briefly to our recent observalivos on the boundary layer along a concave wall. The mean
velocity. measurements reveal that the spanwise variation has a definite wave number
whether the boundary layer be laminar or iurbulent. The variation is interpreted as
produced by a system of vortices with axes in the streamwise direction. For the Iaminar
boundary layer the vortices are identified with those predicted hy the theory of laminar
Instability. For the turbulent boundary layer the concept of eddy viscosity is introduced
to account for the observed phenomena by the theory of laminar instability. In both eases,
however, the mechanism by which the wave number is determined remains an open question.
Since the centfrifugal force in ihe concavely curved boundary layer is analogous to the
buoyant force in a thermally stratified layer in giving rise to instability, it is to be expected

that some analogous phenomena should be observed in the- boundary layer along a heated
horizontal wall. :

- Professor J. KesTiv, — I suspect that Professor LIEPMANN's suggestion that 2 Newtonian
iluid endowed with a turbulent structure could be regarded as a non-Newtonian fluid in
Its dynamic behavior, may prove to be very fruitful. If this idea is accepled as a tentative,
working hypothesis, it is clear, as Professor LIEFMANN SO eloquently demonstrated, that
many exciting avenues for exploration would become apparent.
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The analogy in the behavior of a non-Newtonian fluid and Professor LIEPMANN’s
“turbular” fluid has been observed, and exploited firsl, as far as I can ascertain, by
Professor Paviany (Riviin, R.S. (1957), The relation between the flow of non-Newtonian
flnids and turbunlent Newtonian fluids. Q - ly Appl. Math., 15, 212), In partlcular, Professor
Rrvimy stressed the analogy between secondary flows, for example in elliptic pipes, which
occur with non-Newtonian fluids and in turbulent flows, and the possibility of the occurrence
of so-called normal stress effects in turbulent flows.

He concluded his paper with the statement :

“ ..1t appears quite likely that a phenomenological theory of the type considered, in
which the stress in an element of the turbulent fluid (large compared with the eddy
dimensions) is supposed to depend only on the kinemalic variables in that element or on
the wvelocity-gradient history of that element, will be entirely adequate as a complete

description of the flow propert;es of the turbulent fluid, since eddies can dlﬂ’use from one
point of the fluid to another ”

Mr. P.S. KLEPANOFF. — W:a_th respect to the comment made as {o the experlmén_ta}]y
observed Kamman-Tavior vortices in turbulent flow, and the inference of imstability . of
turbulent flow, one has io allow for the possibility that such motions may result from
the laminar instability proecess, or may be due to irregularities in the wind stream. ' -



INTERFACES AND INTERMITTENCY
IN TURBULENT SHEAR FLOW

Donald COLES

California Instituie of Technology
Pasadena - California - U.S.A.

SOMMAIRE

On passera en revue des expériences sur des écoulements intermittents dans un tube,
des écounlements de Couette circulaires, des écoillements de couche limite, et des écoule-
ments libres compléfement établis dans des sillages ou des jets. L’accent a été mis sur
‘I'aspect descriptif plutét que sur I’aspect analytique du probléme. Ce rapide survol de la
question indique clairement qu’il est nécessaire d’effectuer une étude plus poussée de la
stabilité des écoulements mixtes (Inminaire-turbulent) au cours du régime de transition, de
la propagation de Yinterface dans des conditions trés générales, et des problémes gui s’y
rattachent.

SUMMARY

Experiments on intermittency are reviewed for pipe flow, circular Couctte flow,
boundary-layer flow, and fully developed free shear flow in ‘wakes and jets. Phenomenclogical
rather than analytical aspeets of the problem are emphasized. The survey clearly indicates
a need for further work on the question of stability for mixed laminar-turbulent flows in
the transition regime, on the guestion of interface propagation in a general environment,
and on related questions.

lA. — Introduction

The phenomenon of intermittency was first recognized us an important feature of
turbulent shear flow about twenty years ago, and has since been encountered in many
different experimental situations. The main current of theoretical research in turbulence,
however, has not dealt directly with this particular problem, and the available experi-
mental information is widely scattered in the literature. In keeping with the spirit of
this colloquium, the purpose of this article is to review existing knowledge of the subject,
to identify as far as possible the important physical processes connected with inter-
mitlency, apd to suggest areas in which further research is needed.

At the outset this survey was intended to be a discussion of intermittency as it
oceurs near the boundaries of free shear flows such as the wake, the jet, and the mixing-
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layer. For several reasons, however, it has become necessary to include a discussion of
intermittency as it oceurs during transition, especially in pipe flow and circular Couette
flow. In all cases, intermittency implies the existence of definite interfaces separating
regions of laminar and turbulent flow. The characteristic secale, propagation velocity,
and other properties of these interfaces appear to be determined primarily by energy
processes involving the largest eddies in the turbulent regions. These energy processes
in turn are sometimes quite sensitive to changes in Reynolds number, at least in the
neighborhood of the lowest Reynolds number for which shear turbulence can maintain
itself in any given environment. From this point of view the flow in a transition region
has the advantage that both the energy balance and the interface geometry are highly
exposed, experimenially speaking. Moreover, experiments related to intermittency can be
carried out under relatively closely controlled conditions in a transition region, in
contrast to the situation in a fully developed free shear flow.

B. — Pipe Flow

Transition in pipe flow is marked by intermittent turbulence which takes the form
of alternating slugs of luminur und turbulent fluid moving down the pipe. The transition

oy

range in terms of Reynolds number BR= e (where U =-mean velocity, d = pipe
. R

diameter) can readily be identified by observing the flow far downstream for highly
disturbed entry conditions. For R < 2000 (approximately), turbulent regions tend to
decay and disappear as the fluid proceeds downstream; for R > 2800 (approximately),
turbulent regions tend to spread into laminar ones and to fill the pipe completely. In an
intermediate range 2200 << R < 2600, however, there apparently exists a regime of mixed
laminar-turbulent flow which is statistically stationary far downstream. This conclusion
is based on Fig. 1, which shows the dependence of the intermittency factor Y on Beynolds

namber, with 7 (z = distance from pipe entrance) as parameter. The method for

measuring ¥ is based on the difference in mean momentum for laminar and turbulent
motion when the mass flow is held fixed. If the fluid is a liquid which emerges from the
pipe as a free jet, the trajectory of this jet will fluctuate between two positions !, and the
liquid can readily be separated into two parts representing laminar and turbulent flow
respectively, Rorea (1956) made the first quantitative measurements by this method,
and the later observations by CoLzs (unpublished) merely extend these data to larger

o .
values of E—"'The experiments by CoLes were done in a rather off-hand way as an exercise
for students, and there is some uncertainty about the proper value of the viscosity and

‘ o -
hence of the Reynolds number at any one value of T However, the data definitely

1. For an interpretation of this phenomenon assuming that the pressure drop rather than the
mass flux is fixed. see PRANDTL and TIETJENs. Hydro-und Aeromechanik, Band I, Springer, Berlin,
1931, pp, 31-43. It should be noted, however, that the descriptions quoted by Pranvii and TIETIENS
are entirely consistent with the assumption of a constant mass flow and a fluctuating momentum.
In this connection, see also several brief papers by SackMaNN in Compfes Rendus (e.g§., 239, 320-222,
1954).

-
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Some details of pipe transition have also been described by LINDGREN (1957-1960),
who used optical methods to study the flow of a birefringent liguid (bentonite sol).
Much of LinnDerEN’s work is concerned with the evolution of individual turbulent slugs
observed at successive stations relatively near the entrance, rather than with agymptotic
conditions far downsiream. However, one quantity which sceins to be quite insensitive
to the state of the flow is the slug trailing-edge velocity »*, shown in Fig. 2. These data
were obtained in various tubes with various fluids and entry condifions, using both
optical and pressure instrumentation !. The measurements obviously extend far beyond
the real transition range in both directions, so that for the most part the flows in
question cannot be statistically stationary in 2. Linperen’s observations at low values
of R confirm the wellkknown fact that turhulence originating near the entrance tends
to decay far downstream; his measurements of interface veloeity in this range refer
to slugs which have survived long enough to be detected at two successive stations along
the pipe (for decumentation of these remarks see the oscillographic records in LINDGREN,
1957, Figs. 4.6, 4.7, 4.19, 4.20, as well as Table 2.5; Linporex, 1960b, Fig, 5). For the
measurements at high values of R, on the other hand, a relatively low level of inlet
turbulence was necesgsary in order to ohserve intermittency at all. Slugs first appeared
somewhere downetream of the entrance and grew rapidly (see the oscillographic records
in LinpereN, 1957, Figs. 4.14, 5.9, 5.10; Lixperen, 1960b, Figs. 6, 7). Provided that these
slugs had not yet merged Livnerexy wasg able to measure the slug leading-edge velocity
1#* shown in Fig, 2. He does not commment on these data in terms of the implied rate
of approach to an othbmum state, and does not provide any information about flow
at lower Reynolds numbers, where the relative magnitude of the leading- and trailing-
edge velocities must be reversed 2. "

Another phenomenon observed by LINDGREN is splitting of individual turbulent slugs
(see the records in Linnomew, 1957, Figs. 4.7, 4,19, 5.4), usually at Reynolds numbers
centered in the lower transition region at about R — 2350, If intermittency is represented
by an on-off function v {z, r, £; R}, with v = 0 (laminar flow) or y = 1 (turbulent flow),
the mean amplitude of this funection with respect to time (and also with respect to
radius) is the quantity ¥ (z; R) already plotted in Fig. 1. The mean period, expressed
as the mean frequency # of turbulent slugs, can also be observed by the jet-momentum

technique.' For 'c_t- greater than about 200, Rorra found that the dimensionless frequency

nd
T has o maximum value of about 0.025 at a Reynolds nuber of about 2400, as

shown in Fig. 3. On either side of the maximum the slug frequency decreases sharply
becanse at lower Reynolds numbers the slug population is reduced near the entrance
by the demise, and at higher Reynolds numbers by the consolidation, of individual slugs.
Rorra smoothed his original data severely (on the ground that vibration and capillary
forces may have caused the jet to break up for the longer-tubes), presumably in an effort

1. A slight effect of bentoniie concentration was noted by LinpsrEn (see 1959¢, Fig. 4, or 1060q,
Fig. 8). At the lowest concen{rations the optical data were in good agreement w1th the pressure data
obtained with distilied water.

2, Note added in proof. A limited investigation of channel flow by dye techniques under
roughly corresponding conditions has been reported by G.C. Sapriin in “ Behavior of isolated
disturbances superimposed on laminar flow in a rectangular pipe ", J. Res. NBS, 64A, 281-289, 1960.
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and LINDGREN (1957). Rotta’s data obtained by jet-momentum technique in water and by hot-wire
tchnique in air; remaining daia obtained h)ﬂrloptical methods in birefringent Hoquids.
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Ficunre 4

Excursion of mean-velocity profile in pipe flow at R = 2550, y = 0.7, according to Rotra (1956).
Open eireles triangles show characteristic velocities observed in laminar and turbulent regions.
Solid circles show average profile measured by damped pitot tube, Solid line is parabolic
laminar profile and dashed line is estimated turbulent profle, both adjusted to provide
: proper mass flow, oE
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Several writers have proposed as a first approximation that intermittency in pipe
flow shounld be viewed as a quite literal alternation betwcen fully developed laminar and
turbulent regimes. By observing the DC and low-frequency components of a hot-wire
sigoal in a flow of air at B = 2550, Rorra (1956) found that the axial velocity at a fixed
point fluctuated betwéen two values characteristic of laminar and turbulent flow respec-
tively. These values are shown in Fig. 4, together with the mean profile indicuted in the
same flow by a heavily damped pitot tube. Although neither of the momentary profiles
vields the correct mass flow (which was mdependently measnred by means of an upstream
gonic orifice), the momentary state of the flow seems always to be close to one limiting
profile or the other. Supporting evidence for thig conclusion can also be drawn from
Linparen’s work. The préssure records in Figs. 5.9 and 5.10 of his 1957 paper allow
an estimate of the local axial pressure gradient inside a relatively long turbulent slug.
At both Reynolds number studied (8180.and 3480), this pressure gradient ix abont 1.9
times that in the mtervemng laminar intervals, while the ratio of the commonly accepted
friction coefficients for fully developed turhulent and laminar flow at these Reynolds
vumbers is about 2.0.

If the experimental mdlcatmns just outlined can be applied throughout the tran.
sition Reynolds number range, some useful conclusions can be drawn about the mean
flow in the vicinity of a typical turbulent slug. In a coordinate system moving with .
the slug velocity u* (which according to Fig. 2 is about 0.9 U for the conditions of Rorra’s
experiments in air), the mean flow far downstream can be taken as steady, and an axially-
symmetric stream function can be computed for the two limiting profiles in Fig. 4; i.e.
for the solid and dashed lines. The resulting streamlines must have the form shown
schematically in Fig. 5. Near the wall, which is now moving to the left at the velocity u*,

u*
effmma—

JWMJ L IJWI M/MI/[MIMIJI/[JI/MI/[II WALL

CENTER
LINE

'LAMINAR

FiGURE 5
Schematic representation of pipe slug flow in coordinates moving with slug velocity u*
Note reversal of flow direction near leading (right) and trailing (left) interfaces.

fluid enters the slug at the front and leaves at the rear. Near the centerline the situation
is reversed ; fluid enters at the rear and leaves at the front (with a relative velocity in
both cases of about 1.2 »*), meanwhile slowing down inside (to about 0.6 u*). There
is a small net flow to the right corresponding to the excess of U over u*. The important
point, however, is that a substantial fraction of the fluid entering the slug from the
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rear reverses direction inside and emerges again at the rear, with a similar sitmation
obtaining at the front*.

Fig. b, while topologically sound, has to be modified in detail to agree with existing
knowledge about the size and shape of the turbulent slugs found in pipe flow, For

nd, ’ .
example, the maximum slug frequency =T = (0.025 from Tig. 3 and the condilion

uw* =09 U from Fig. 2 imply that the slug spacing at B =2400 is about 35 pipe
diameters on the average. Since ¥ is about 0.4 from Fig. 1, it follows that a typieal slug
under these conditions is about 15 diameters long. Similar estimates based on these
same jet-momentum data for other Heynolds numbers suggest that a typical slug may
be of the order of 10 diameters long whenever the flow is predominantly laminar, and
that a typical laminar region may be of the order of 20 diametfers long whenever the
fiow is predominantly turbulent. RoxTa also obtained resulis in air, as shown in his’
Fig. 28, which are in good qualitative agreement with these estimates. _
Another feature of turbulent slugs in a real flow is 2 necessary asymmetry with
regpect to #. As shown in Fig. 6 (see also Livneren, 19590, Figs. 16 and 17), there must
be a distortion of the shape of the turbulent slug, this distortion having a sense like that
of the mean-velocity field. In practice the leading edge of a fully developed siug is found
to be long and sharply pointed, while the trailing edge is moderately concave. Both
LinperEN’s flow-vigualization studies and Rorra’s hot-wire data indicate that the turbu-
lence level is relatively high at the rear of the slug, and that the transition from a laminar
to a turbulent state in fluid entering the slug from the rear occurs abruptly (in the case
of Rorra’s hot-wire measurements, in a time small compared to the time constant of
his low-pass filter). The fluid leaving the slug at the front, on the other hand, undergoes
a slow acceleration requiring at least several pipe diameters for completion, while
at the same time the turbulence becomes progressively coarser and weaker until it is no
longer detectable. Near the knee of the turbulent mean-velocity profile both transitions
seem to proceed at an intermediate rate, inasmuch as the front and rear of the hot-wire

gignals are more nearly symmetric with respect to time at —= 0.8. Although no data

were obtained very pear the wall, it is likely that there is again a relatively rapid change
in state at the front of the slug and a slow change at the rear.

C. — Circular Couette Flow

Trom the point of view of transition, the circular Couette flow between concentric
rutating cylinders is similar in several respects to the fiow in a pipe. Although trapsition
in Couette flow it usually understood to involve the kind of instability first studied by
TavLor in his classic paper (1923), this instability actually occurs only in flows domi-
nated by rotation of the inner cylinder, In flows dominated by rotation of the outer
cylinder, on the other hand, the experimental evidence suggests that the basic motion

1. It may or may not be significant that the pattern of Fig. 5, when repeated indefinitely,
resembles the cat’s-eye pattern associated with the small-disturbance instability theory when the
secondary molion is viewed in a coordinate system moving with the wave velocity, From this point
of view the secondary motion in pipe flow is equivalent in part to = series of toroidal vortices
traveling down the length of the pipe at slightly less than the mean velocity.
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- iy stable to infinitesimal disturbances, that the flow always becomes turbulent at suffi-
ciently high speeds, and that there is an intermediate range of Reynolds numbers in
which a stable mixed laminar-turbulent configuration is observed provided that suffi-
ciently strong disturbances are present. These are the same properties which distinguish
the pipe flow, the major différence between the two flows being that any tendency toward
periodicity of the intermittency phenomenon in the transition region i more rigidly
enforced in the case of the Couette flow by the closed geometry. \

The typical configuration in the intermittent regime of Couette flow is a spiral band
of turbulence, as shown in Fig. 7. This spiral rotates at approximately the mean angular
velocity of the two cylinders, without changing its shape or losing its idemtity, and
observationg of the flow from either wall reveal a remarkably regular alternation of
laminar and turbulent motion. For one experimental apparatus, the range of operation
within which this spiral turbulent pattern occurs is shown in Fig. 8. The base of the

: : : o rf Usr, Vo 7o
figure is made up of the two Reynolds numbers R, = P — % and Ry = ik
’ ' v v ¥

Uy r
= "' for the inner and outer cylinders (r — radius, ® = angular velocity, U == sur-
v .

Ficure 8
Angular velocity * of spiral turbulence paltern in circular Couectte flow as function of inner
and outer: cylinder Reynolds numbers according to Van Atta (unpublished). Open circles are data
for constant Ry; solid circles are data for constant R,. Dotted line is Taylor boundary. Point ¢ A»
corresponds to photograph in Fig. 7; point ¢B» to data of Fig. 9; point «C» to data of Fig. 10;
point ¢« D » to ohservations of second mode (two spirals).
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face velocity), and the ordinate is the angular velocity of the turbulent pattern, w¥,

' (o + w4)

_ 2
{compare Fig. 2 for the slug velocity in pipe flow). For most of the figure the cylinders
are rotating in opposite directions, with the speed of the inner ¢ylinder small compared
to the speed of the outer one. The observations in Fig. 8 refer to flow of air in a machine
with an annular working space having an outside diameter of about 90 cm, a length
of about 150 cm, and a thickness of about 5 cm. The ends of this space are closed by
plates which rotate with the outer cylinder but which can be moved axially (while the
c¢ylinders are running) te change the length of the working space between the limits
80 and 140 c¢m. The instrumentation consisis at present of several hot-wire anemometers.
Yor the measurements reported in Fig, 8, the data near the center of the transition
region were obtained by observing the flow at a radius midway between the two cylinders. -
The intermittency factor Y at this radins was usually between 0.3 and 0.7 but was not
measured accurately, inasmuch as the primary purpose of these meagnrements was to
find an operating condition for which the mixed flow was particularly regular and stable
and thus suitable for more elaborate experiments. An increase in speed within the
transition region usually caused the turbulence to spread throughout the flow at rid-
radius, although the spiral configuration could still be detected by observations made

- close to one wall or the other (an example in which the inner cylinder is at rest is given
in Fig. 10 below). A decrease in speed was usually accompaneid by increasing random-
ness and by degeneration of the spiral structure until the turbulence finally died out
completely. Following this transition to fully laminar flow, it was usually necessary
to increase the speed appreciably or to introduce an artificial disturbance (such as an
air jet at one wall) before the turbulence could be reestablished. Under appropriate
conditions the secondary motion associated with the Tayror ingtahility sometimes served
as the necessary finite disturbance for tripping the flow. For laminar motion thig parti-
cular instability is associated with the dotted line in Fig. 8, and there is some indication
that a related instability may play a role in the spiral turbulence, even though the latter
phenomenon when present has a preemptive control over the nature of the motion.
Except for the hysteresis just mentioned, which means that two distinet states (one
completely laminar, the other partially turbulent) could be observed at some speeds,
the spiral flows in the transition region appeared te be unique for a given geometry
regardless of the way in which they were established.

normalized with respeet to the mean angular velocity of the two cylinders,

The photograph in Fig. 7, corresponding to the point marked <« A » in Fig. 8, was
obtained using a smaller but geometrically similar apparatus equipped with glass
cylinders and filled with a silicone oil. The flow-visyalization technique was essentially
the same as that described by Scmurrz-Grunow and Hew (1956). Visual observations
with the small apparatus, as well as hot-wire data obtained in the large one, suggest
that the helix angle of the spiral turbulence pattern is usnally close to 60° (measured
from the axis of the cylinders). The ordinary configuration iz a single spiral, but at
least one cage has been found, at the point marked « D » in Fig. 8, of a second mode
involving two spirals 180° apart. Both of these observations are subject to later revision,
inasmuch as the data so far obtained refer only to a gap/inner radius ratio of abont 1/8.

At two operating conditions, marked ¢« B» and «C» in Fig. 8, the cross-sectional
shape of the spiral tarbulent region is known from intermittency measurements carried °
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OUTER WALL

INNER WALL
_—

: FiauRe 9
Interface geometry in circular Couette flow according to Van Atta (unpublished). Operation at
point ¢« B» in Fig. 8; opposite rotation with Ry = 50,000 and R, = 5,600.

out by C. Van Arrsa and H. Ocuro respectively at GALCIT, The data are shown in
Figs. 9 and 10, In both cases the intermittency factor was first measured as a function
of radius. For the condition « C », the tangential position of the laminar-turbulent inter-
faces was then estimated with the aid of multiple oscillograph records. For the condition
¢«B», Van Arra developed a method of adding two hot-wire signals obtained at different
radii and measuring the intermittency factor of the composite signal. These data gave
directly the mean tangential position of one interface at various radii with respect to
the position of the other interface near one wall.

: -—
0.47 Ug OUTER WALL
ENVELOPE
OF : MEAN
VELOCITY
- g
053U, INNER WALL

—_— |
'FLOW IN TRANSITION REGION—--INNER CYLINDER AT REST

Ush/vy = 27,800

Fieure 10
Interface geometry in circular Couette f{low according to Oguro (unpublished). Detail at left is
envelope of tangential mean-velocity profile. Operation at point «C» in Fig. 8; inner cylinder at
rest with R, = 250,000,
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The measnrements in circular Couette flow clearly demonstrate the same phenomenon
already pointed out in conuection with pipe flow. In the mixed laminar-turbulent confi-
guration, fluid is again observed to pass from a laminar region into a turbulent omne
and out again. The example in Fig. 10 shows that when the overall intermittency level
is not inuch less than unity the tangential velocity profile has a characteristic turbulent
shape throughout the flow. The prefile corresponding to Fig. 9 hasg not yet been measured,
but it is expected that the variations in mean velocity at a fixed radius will be relatively
larger in this case because of the greater extent of the laminar region. S

D. — Boundary-layer ¥Flow

The main features of transition so far deseribed are repeated, with some important
differences, in boundary-layer flow. The transition region is marked by the passage ‘of
turbulent spots which originate at some point upsiream and grow in size as they are
carried downstream by the ambient flow, These spots have a characteristic shape; a
characteristic velocity, and a characteristic growth rate, all of which- depend only
slightly if at all on Reynolds namber. ‘ : C ‘

The concept of random turbulent spots is originally due to Emmons (1951), who
assumed on the basis of experiments with a water table that the spots could be treated
as independent of each other and that the growth rate could be tuken as constant.
Emmons also introduced a source density funetion g (2, 2, ) to describe the spot produe-
tion process, and showed that the intermittency factor ¥ for statistically stationary
trangition conld be written as

F(2,2) =1— e [ns@ L0 agaes

where # and 2 are coordinates parallel to the surface and D is the upstream domain

‘ : Ficure 11

Geometry of artificial turbulent spot in boundary-layer flow according to ScHusaver and Kie-

BANOFP (1855). Arrows show estimated direction and relative magnitude of interface velocity with
respect fo fluid near wall and near free stream. #

16
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, Of influence, here assumed conieal in space and time, of the point (z,2,t). Ewuons’
assumption of a constant growth rate has since been verified. by detailed measurements
of spot.growth in a boundary layer by Scuusavezs and KLEBANOFF (1955). The technique
eventually - adopted by these authors, following MrrcENER (1954), was to generate
artificial spots by means of an electric spark. The shape of the spot as inferred from
hot-wire traces is shown in Fig. 11. The comical property of the spot geometry seems
to be well established, at least for the ‘planform. Tt follows that the instantaneous
veloeity of propagation of the boundary is in the direction of the radivs vector through
the point of spot origin, and is proportional to the magnitude of thig vector, Alterna.

. ‘ x
tively, the spot boundary can be taken as stationary in coordinates , zt (but not

Up T Uy

hecessarily yt ), where u,, is the free-stream velocity. ScHEUBAUER and Kiesavorr found

the interface velocity (with respect to the wall) to be very nearly 0.5 u, at the trailing
edge and 1.0 u, at the leading edge, and this information in turn allows 2 rough estimate
to be made of the local fluid velocity with respect to the spot boundary, also shown in
Fig, 11, Neéar the wall, where the fluid is almost at regt, the relative flow is into the
spot at the front and out at the rear. Near the free stream there is the expected flow
into the spot at the rear, but the leading interface is almost stationary in the fluid
and iz not all active in the enirainment process associated with the growth of the spot.

Frouvne 12
Relative intermittency factor for a pair of artificial spots in boundary-layer flow according to
Evrper (1960). Spet geometry estimated on basis of Fig. 11.

EMmorg’ dther major assumption, that turbulent spots behave independently of each
- other, hag been closely verified by Erber (1960). Fig. 12 shows the observed interaction,
or better the absence of interaction, for two artificial spots generated side by side and
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simultaneously at regular intervaly by the spark technique in air, ELbER meagured the
intermittency factor ¥, here defined as the duration of turbulent flow compared to the
time interval between sparks, as the pair of spots traveled downstream in a boundary
layer. Although Erpsr does not report thé times of spot arrival and departure separately,
8o that no direct inferences can be drawn about the shape of the spots in question, the
observations in Fig. 12 are seen-to be reasonably consistent with the spot geometry as
determined by SCHUBAUER and KLERANOKT. KLDER aiso used a dye technique in water
to observe the shape of a boundarylayer spot du-ectly, with the notable result shovm
in Fig. 13. :

Flnally, Duawan and Narasmvua (1958) have studied the intermittency factor ¥ (2)
experimentally for transition in a flat-plate boundary layer under a wide variety of °
conditions, They concluded on the basis of their own and other data that EmMuons’ source
density function g (2,2, ¢) could best be represented by a delta function in #; in other
words, g = g, 3 (@), where g, independent of # and t. If the turbulent spots 6riginate
along the line ¢ = @, rather than nniformly in 2 as assnmeﬂ by Enmons, the intermitténey

factor for x — 2; > 0 can be Wmtten .
w— .)2

Oy (a:) =1-—e° :
where ¢ is a geometrical factor of order 2/3 (the ratio of the projected spot area to the
area of the circumscribed rectangle) and the quantity # is a characteristic length for
the transition region (defined here as the average distance required for the front of one
spot to overtake the rear of another when the average period between successive spots
is computed by taking the spot width at # =T as the active length for the line source
of strength g, at # == ;). Duawax and NarasiMua also emphasized in their paper the
principle of sauperpogition, or alternation of properties, as a means of representing flow
in a transition region. By weighting the turbulent and laminar contributions by
factors 7 and 1— 7 respectively, they were able to fit net only the surface friction
distribution but even the details of the mean-velocity profile. This procedure assumes,
kowever, that the properties of turbulent boundarylayer flow are know at arbitrarily
low Reynolds numbers, either through extrapolation or thromgh direct measurement.
Such an agsumption seems to be essentially unprovable, unlegs the properties in gquestion
can be associated with spot flow per se or unless some quantity can be found (corres-

ponding to the mass flow in a p1pe) which is common both to flow in a spot and to flow
in a fully turbulent region. :

For boundary.layer flow at l.arge Reynolds numbers, the problem of jntermittent
transition is replaced by the problem of intermittent turbulence at the irregular free
boundary of the turbulent flow. The case of 2 rough wall has been studied by Corrsin
and KisTLER (1954), and definitive measurements of flow structure for the case of a
smooth wall have been made by Kirpanorr (1954). KLEBANOFF's measurements of mean-
velocity profile w (y) and intermittency factor Y (y), shown in Fig. 14, will be discussed
further after a brief description of intermitteney measurements in other free shear flows,
all of which differ from the flows so far described in the important respect that interfaces
are propagating into regions originally free of vorticity.

§
H
§
t
‘



E. — Free Shear Flow

In Fig. 14 are shown mean-veidcity profiles characteristic of the plane wake, the
circular jet, and the mixing layer, as observed by TowNSEND (1949}, CorrsIN and
-KisrLer (1954), and Yaepmanwy and Lacrer (1947) respectively. Also shown are inter-
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BOUNDARY PLANE  CIRCULAR  MIXING

LAYER WAKE JET LAYER

Fioure 14
Mean velocity, imtermittency factor, and interface velocity in free shear flow according to HKim-
BANORF (1954), TOWNSEND (1949), Cormsiv and KisTiem (1954), and LimemaNs and Lavrer (1947).
‘ See text for definitions of s* and sg.

mittency-factor distributions for the first two of these three flows. In all cases the
‘data exhibit the appropriate similarity in terms of a suitable characteristic velocity T,
defined below, and characteristic length &, defined as twice the distance in which half the
mean-velocity change occurs for the jet, the wake, and the wake component of the
boundary layer. The intermittency properties, including the mean position of the
laminar-turbulent interface and the standard devistion of the {essentially Gaussian)
probability density for fluctuations about the mean, algo show a close similarity in

terms of é{- Fig. 14 indicates that the fully turbulent core flow is relatively smaller for

the plane wake than for the jet or boundary layer; the case of the circular wake and the
plane jet have not been studied experimentally in thege terms, although the former
case can be represented qualitatively by the photograph shown in Fig. 15.

Because of the random nature of the intermitiency signals which are typical of free
shear flows, it is extremely difficult to measure the local propagation velocity of an
interface with respect to the fluid. A discussion of the posgible occurrence of zerv or



Fig. 13 et 18

D. COLES A

Fig. 13. — Turbulent spot in boundary-layer flow (Elder, 1260, Fig. 2). Flow visualization in water using up-
.- stream dye injection at surface. :

i ig. 18. — Turbulent axially symmetric wake (Aberdeen Proving Ground). Flow visualization in firing range
using shadowgraph obsexvation of dengity fluctuations in air. ‘
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negative velocities is therefore somewhat academic, although the example of spot beha-
vior in boundary layers suggests that this possibility should not be dismissed out of
hand. Only one public attempt has been made, by Corrsix and KisTLER (1954), to estimate
the local interface velocity s*. They proposed a formula $*2 ~v @ " (Where &' = vor-
ticity fluctuation) which is based in part on a model of an oscillating Rayleigh flow and
in part on dimensional reasoning. This formula prohibits negative values of -¢* hut is
otherwise unexceptionable, especially if s* is large and pogitive. On the other hand, the
mean entrainment velocity 8* is known experimentally to be independent of viscosity in
. free shear flows with similarity. If it is assumed that the entrainment of non- turbulent
fluid is determined by energy processes which are associated with the largest eddies in
the flow, it is nataral to consider (among other alternatives) a characteristic velocity s,
defined in terms of turbulence production® by the formula

pei8 = d,aVv

As applied to fully developed shear flows, the volume V in this formula includes the
whole lateral extent of the shear flow over unit length in the flow direction; the
surface § is the part of the bounding surface made up of laminar-turbulent interfaces;
and ®; is the local turbulence production, defined in Cartesian coordinates as the double

sum — p o oy 6— The form of this definition for s, is controlled largely by the
; -

3 .
‘gimilarity laws for ®; and by the necessity for considering both plune and axially-

symmetric flows. For the plane wake, for example, the formula redu(:es within the
boundary-layer .a,pprommdhon to

P90=f ’— y

Simple numeuca,l calculations using the expemmental data of Fig, 14 then show.
8
that the ratio % is about 0.19 for the mixing layer (U ==free stream velocity u.),

0.18 for the circular jet (17 = velocity u, on centerline), 0.25 for the plane wake (U — velo-
city defect u, on centerline), and 0.04 for the boundary layer. In the latter case the

T

’u, .
velocity gradient -g-— for the turbulence production has been evaluated for the wake
Y

component glone, and the characteristic velocity U has been taken as the velocity defect
at the wall in the equivalent wake (see CoLzs, 1956). ’

For each of these same flows it is a simple matter to eompute the mean veloclty‘

normal to any surface % = constant. When made dimensionless in the appropriate way

this normal velocity will depend only on % except for a slight effect of viscosity in the

1. These considerations are of an exﬁ-emely preliminary nature, and are not intended to
demonstrate a general principle for the problem of interface propagation. They are certainly
influenced, perhaps favorably and perhaps not, by the exper]mental fact that negative velocities do

sometimes occur at interfaces propagating into ‘turbulent regions, as pointed out earlier in conuection
with transition,



244

cage of the boundary layer. Finally, the mean entrainment velocity % can be arbitrarily

‘ . : . 1
defined as the value of the dimensionless normal velocity at the point where ?:—2—,

assuming that the latter is known. For the boundary layer and the cireular jet the
ratio of the calculated mean entrainment velocity 3 to the characteristic production
velocity s, is about 0.20, and quite comparable valnes would evidently be obtained for
both sides of the mixing layer, according to Fig. 14, for any reasonable estimate of the

intermittency factor distribution. The ratio — for the plane wake, unfortunately, is
%o
about twice as large.
F. — Discussion

Among several related questions raised by this study of interfaces and intermittency,
one of the most important concerns the remarkable stability of the mixed flows already
described. It seems that nature does not ordinarily provide a continuous range of stafes
varying from fully laminar to fully turbuleni {low !, If both types of flow are present
they are distinet, in the same sense that the liquid and gaseous states are distinet for
any ordinary fluid. At least in the case of transition, the turbulent regions have a
characteristic geometry and a characteristic propagation velocity which are so regular
that a definite mechanism must be involved. It may therefore he constructive to approach
this problem of transition from above rather than from below, hy supposing that it is
really turbulent flow which iz the normal state, while laminar flow is abnormal. The
stability of the turbulent state can then be investigated in various ways, say by
baraphrasing the usual comparison of the rates of production and dissipation of flue-
tuating energy with emphasis on the viability of turbulent motion at low Reynolds
numbers. The important property common to the transition flows being discussed here
then becomes the existence of interfaces propagating abnormally; i. ¢, from laminar
into turbulent regions, so that fluid passing through these interfaces is passing from
the turbulent state to the non-turbulent one.

By definition, the term “ turbulence * implies the existence of random non-steady
three-dimensional. vortieity. In two-dimensional incompressible flow, vorticity is gene-
rated at solid boundaries and remaing permanently attached to individual fluid elements
except for the diffusive effects of viscosity. Tn three-dimensional flow, however, the
generation and diffusion of vorticity are subordinate to a phenomencn which has been
variously described as vortex stretching or as a kind of gyroscopic precession in the
fluid, This latter phenomenon is non-dissipative and hence in principle reversible, and
may he an important factor in the processes which control the appearance, flow, and
‘disappearance of turbulent energy. ‘

The paper by Rorra (1956) includes an attempt fo estimate the reversible part of the
energy conversion between mean flow and turbulence in the vicinity of an interface in

1, Exceptions to this ruvle are of course Lknown. For example, the cellular instabilities which
oceur in circular Couette flow and in free convection between parallel planes are the first stage of
a monotonic and essentially reversible transition from a discrete to a continmous spectrum for
deviations from mean flow quantities.
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pipe flow. Howerver, this estimate is not entirely satisfactory, as it assumes that %2—

T
5 is not. The effect of radial pressure gradients is
' .

therefore not taken into account. The actual magnitude of these pressure gradients in
pipe flow (or of the corresponding gradients in any other intermittent flow) is so far
unknown, but the observed reversal in flow direction relative to the interfaces, shown
in Fig. 5, suggests that they may be important. It seems to be typical of intermittent
flow that the relative mean velocity decreases during a laminar-turbulent transition -
and increases during -a turbulent-laminar one. These changes in mean velocity are
consistent with a relatively sudden application or removal of turbulent stresses, which
tend to make the mean flow more nearly uniform, but are also consistent with a
process of kinetic-energy conversion between mean and random flow fields. In the case :
of an irregular interface like that characterizing the boundary layer, it canr be conjec-
tured from a knowledge of spot behavior that the rearward-facing interfaces are most
active in the entrainment process. Consequently it is entirely plausible that non-turbulent
fluid moving at freewtream velocity can overtake these siower-moving mterfdces from
the rear.

is independent of radius but that

Several other transition problems also invelve the effect of intermittent turbulence
on its environment and vice versa. One such problem iy the ealming effect first pointed
out for boundary-layer flow by ScuuBaveEr and KreeaNorr (1955). At the rear of a
turbulent spot the surface friction is left abnormally high as the fluctuations disappear.
The velocity profile is left correspondingly full, and reverts only slowly to the nhormal
(Blasius) profile, meanwhile showing an increased stability which prevents any new
transition immediately behind the spot unless quite large disturbances are present. A
similar gituation may occur in pipe flow, if it iz true that the laminar intervals between
turbulent slugs have a characterigtic minimum length of about 20 diameters. A related
problem in pipe flow is the splitting process described by LiNDerEN (1957). In a pipe
flow in which the intermittency factor is approaching an equilibrium value from below,
there is apparently a strong tendency for turbulent slugs to grow to a definite length
and then to divide rather than to continue growing. Thus & single slug produced
artificially in an otherwise quiet pipe flow (at R = 2350, say) might be expected to
show repeated splitting. LiNperen’s data also produce the impression that it is the
leading edge of a slug which is the active region for this splitting process and for growth
in general.

A preliminary contribution to the subject of energy processes in mixed flows has
recently been made by Lavrer (unpublished), who studied the decay of fully-developed
pipe turbulence following a gradual transition from one cylindrical pipe to another of
larger diameter!. In this particolar experiment the Reynolds number decreased from
3450 to 1380 as a result of the increase in area, The decay of the turbulence was found
to be free of intermittency arising through the discharge of individual slugs (e. g,
Laurer’s measurements of r.m.s. velocity fluctuation do not show the characteristic

1. Note added in proof. Similar experiments in pipe flow have recemtly been reported by M.

Smurkiy in * Transition from turbulent to laminar pipe flow ", Convair Se¢i. Res. Lab. Research
nofe 52, Oct. 1061,
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minimum-away from the centerline described by Rorra), and the flow in question ean
be roughly visualized as a statistically stationary tongue of ‘deeaying turbulence of
vaguely conical shape (¢f. Figs. 6 and 7 of LiNDGrEN, 19594).

LAUFER’S most arresting result concerns the virtually complete similarity of the
spectrum for the axial veloeity fluctuations on the pipe centerline during the decay of
the turbulence. As shown in Fig. 16, this spectrum is closely exponential in form,

Y @ T e if.
E=e2 ¥ _p | £d£-=1.3GEof ¢ T g Y
2 o d i o %
(where f= frequency, F = spectral density, # = mean velocity on centerline, d — dia-
meter, and B, = reference energy per unit volume), The numerical coefficient 1.36 wasg
determined experimentally from the measured spectrum at the first station, where E = B,
by definition. The parameter & (4L/d in LaurEr’s notation) is evidently given by

E
=1.36 :

and depends on . In fact, this dependence was alsb found experimentally to be of

exponential form, as

a=Ac?

These measurements show a strange kind of equilibrium in which the energy at zero
frequency is essentially unaffected by the decay. The integral scalel for the spectrum
in Fig, 16 is very unearly ad, and increases rapidly with 2. The microscale, defined as
usual in terms of the second moment of the measured spectrum in Fig. 16 or in terms
of the second derivative of the autocorrelation, is smaller by a factor 2. After 40

diameters of decay, the energy on the centerline has decreased by a factor of 10, and both
scales exceed the pipe diameter,

On the basis of these and other measurements, LAUFER suggests the possibility that
viscous dissipation alone may. not be sufficient to account for the disappearance of
turbulence in this partieular flow. The energy balance on the centerline for the axial
‘component of the turbulence can be written

—140 6 + 2530 — 2605
+ _r . A ’ ' o
a_a_(”' ”) = —7w 2% | DIFFUSION + DISSIPATION
or \ 2 . or .
—18 —2 —13 —3

The term on the left side of this equation and the first term on the right side (the turbu-
lence preduction) can be evaluated directly from the data, The dissipation term can be
very erudely estimated as 1/3 of the value given by the usual formula for isotropic
‘tarbulence, using as dissipation scale the miecroscale already mentioned. The diffusion
term is then the difference. The numbers written above and below the equation are the

g : 2
relative values obtained by this method at Lavrer’s first gtation (-(-i-: 10) and last

1. The integral scale is defined here as the base of a rectangle having the same area and the
same intercept at zero frequency as the measured speciram in Fig. 16. Laufer’s integral seale L is
tour times smaller becanse of his conversion to a one-dimensional spectrum by means of formmulas
derived for isotropic turbulence.
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Froune 16
Normalized power speciral densities for axial component of decaying shear turbulence in pipe
flow at R = 1380 according to Laufer (unpublished}.

» :
station (-E = 50) respectively. In the early stages of deeay, as pointed out by IL.AUFER,

the loss of energy by dissipation is large and is almost balanced by diffusion of energy
toward the centerline, much as in aniform pipe flow. In the final stages of decay both
terms are greatly diminished, and the diffusion term has changed sign to indicate a
flow of energy away from the centerline. This last conclusion iz somewhat doubtful,
because the Iength taken as the dissipation scale is of the same order as the pipe
diameter. It is not obvious that fluctuations on this scale should be referred to as
turbulence in any ordinary sense, or that the flow in question can be nsefuily discussed
in terms of interfaces and intermittency. A conclusion which is not doubtful, on the
other hand, is that the turbulence production for the axial component is negative and of
substantial size, at least in the early stages of decay. A similar statement can be made,
however, for more normal flows such as the wake, and it is necessary to consider the
turbulence production on the centerline for the full energy equation. This production
is given in the present instance by g (— @ @ ﬂ«-—-ﬁ Z{/
. ' i A

and will be negative only if «’«" > ¢ ¢ (¢f. the gituation on the centerline of a wake,
where this condifion is net satisfied). '

Finally, let me return to the question of the extréme stability of the mixed laminar-
turbulent flows observed in pipes and between rotating c¢ylinders. Tn these flows there is
evidently a balance between production and consumption of turbulent energy such that
if the volume of turbulent fluid increases for any reason, the production of turbulent

—— , o, Ot
=p(—wuw + v )——am
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energy increases less rapidly than the congumption; the turbulence is relatively weak-
ened; and the interface veloeities are modified 80 as to reduce the volume of turbulent
fluid. This problem can hardly be discussed .intelligently, however, without & move
complete knowledge of the structure of the turbulent regions in their particular nen.
turbulent environment. The experimental opportunities in this field are almost unlimited.
For example, the natural regularity of the spiral flow configuration described earlier
makes it possible to study the interface problem in a captive environment, and an
ambitious experimental program is under way at GALCIT to exploit thig opportunity.
In the large machine already described, the instantaneous values of the three veloeity
components will be repeatedly sampled at a fixed point in the rotating spiral pattern,
and the resulting ensemble of values will be used to obtain the stochastic mean velocity
and the gix components of the Reynolds stress. The main objective of. this experiment
is to study the process of energy delivery from the moving walls to the turbulent part
of the motion in a typical spiral flow, probably a flow near the point marked “B " in
Fig. 8. The measurements, if successful, should help to clarify the question which
underlies this whole diseussion of Intermittency; is the turbulence production
®; =1 grad § a positive definite quantity, corresponding to the dissipation in laminar
flow, or is it not ? Other important objectives of the experiment are to determine the
average local direction and velocity of propagation of the laminarturbulent interfaces,
and to observe the probability structure of the velocity fluetuations and their products
up to perhaps fourth order. Some of thege quantities may -also be resolved with respect
to frequency. '
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DISCUSSION

Sir Geoffrey TavLom. — LiNDGREN’s pipe experiments show that when the Reynolds
number Ud/y = R is confined to a rather short range near 2,400, turbulence is intermittent
and in the lower part of this range the turbulent regions are infrequent and widely separated.
By careful control of the entry conditions, several experimenters have shown that non-
turbulent flow can be maintained at far higher values of R. In some old experiments, 1
reported non-turbulent flow up to 32,000 and I described how the disturbance produced by
local bending of the pipe could be made which produced lateral velocities of order 1 or
2 percent of the mean without inducing turbulence even at R = 32,000. o ,

What is thought to be the difference between the non-turbulent flow which exists in
long lengths of the pipe in LiNDGREN’s experiments at the lower values of R in the
intermittent range and the non-turbulent flow which exists at all values of K, at least up
to 32,000, when great care is takén with the entry conditions ? : '

It is thought that pipe flow is stable for all infinitesimal disfurbances and it may be
that appropriate kinds of disturbance will grow when the amplitude exceeds a value which'
depends on the Reynolds number. If this is true, LinnehEN’s cxperiments might : be
erplained if the distribution of velocity left behind, when the turbulent spot has passed, is
more stable than the parabolic distribution, so that larger disturbances would be required
to start up turbulent flow just after a turbulent spot has passed than when the ‘distribution
has had time o become nearly parabolic again, Thus the lengths of the non-turbulent regions
might be determined by the time taken to build up the velocity distribution to a sensitive
state, If that were the explanation of LiNpDGReN’s phenomenon, the narrowness of the sensitive
range of R might suggest that a comparatively small increase in R would greatly de¢crease the
amplitude of disturbances which would increase, yet the very large increase in R under
which permanent non-turbulent fiow can exist, even when certain types of disturbances are
applied, presents a difficulty to this explanation.

Dr. M. V. MorgoviN. — The evidence of Dr. Lavrer’s and other experiments is that
turbulence away from walls dies out very slowly. But in “retransition” observed in turbulent
spots on flat plates and in the Couectte flow of Dr. CorEs, the decay process appears o be
rapid. One model of “retransition” which has the feature of rapid decay perhaps should
be mentioned — it is probably due fo Clauser.

From the motion of the turbulent spots one would judge that the large eddies move
with the spots. At the trailing edge of a spot, we are left essentially with smaller-scale
turbulence just beyond the laminar sublayer, in presence of an especially siable concave
mean-velocity prafile. There is no snbstantial energy input into these smaller eddies and
the “buffeting” of the sublayer has been removed. Thus the remnants of turbulence can
decay very rapidly in the presence of the wall, without violating our previous views of
dying turbulence. ‘ :

Mr. P.S. KLEBANOFF. — The averaging process of DHAwaN and NamasiMA to which
Dr. CorLss refers to is in principle not completely correct. It neglects the non-linear range
of instability where the mean flow is distorted and is no longer of the Blasius iype.

Consequently there are not only the laminar and fully developed turbuleni stages but this
distorted flow is also present.

As for Lhe lateral propagation of a turbulent spot, this would appear to involve the
stability of the flow surrounding it. This can be inferred from the experimental observations
which show that the angle of lateral growth depends to some degree on Reynolds number;
and that there is a lag in the lateral growth of a furbulent spot when the Reynolds number
is below the critical Reynolds number of stability theory.

Author’s reply

In response to the comment by Sir Geoffrey Tayror, I think it is significant that
Linperen’s flows were initially fully turbulent as a result of disturbances introduced.
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by an orifice at the pipe entrance. The emergence of laminar regions farther downgtream,
therefore, does not necessarily indicate that the lamingr brofile itself is stable to

disturbances coming from adjacent turbulent regions, but only that certain of the
profiles produced by momentary local fluctuations in the turbulent velocity distribution

vice versa) when these regions are initially forced to take up an abnormal configuration.
Bir Geoffrey’s suggestion of increasing sensitivity of the laminar profile with inereasing
distance from an interface, for example, is in effect g suggestion that the length of a
laminar region should tend toward a charaeteristic value at a given Reynolds number.
Another experiment worth considering in this connection is a direct determination of
the effect of secondary flow on stability and transition, say by connecting two straight
sections of pipe by a curved section of variable radius and are length,

In response to the comment by Dr. Morxovin, T agree that the presence of a wall
can greaily accelerate the decay of smali-scale turbulent fluctuations near a laminar-
turbulent interface: walls are in fact present in all proven cases of retransition.
However, it is still necessary to account for the energy of the large eddies and for the

kinematic property that the structure of these eddies is apparently not greatly affected
by the general straining action of the mean flow.

D. R. Bercuov. — I1 n’y a vraiment pas de fluides irrotationnels si Fon tient compte de
Pagitation thermique (mouvement hrownien, etc.). -



COMMENTAIRE DE LA SECTION :
TURBULENCE LIBRE

Prof. Hans W, LIEPMANN, Président

All existing experimental evidence shows that free turbulent flows consist of regions
of nearly homogeneous turbulence and irrotational regions. The dividing boundary is
sharp and its location a stochastic function of time with scales one order of magnitude
larger than the scales of the homogeneous turbulence.

The existence of this “intermittency” removes any hope for a detailed descriptidn of
free turbulent exchange by a single “Ansatz” for the transport parameters, but it permits

the clearer definition of a number of separate problems for study, the solution of which
eventually will lead to a complete picture of free furbulence :

a) The effect of strain on homogeneous turbulence. Both theory and experiment are

b}

e}

d)

nol yet conclusive and present a very promising field for further work,

The structure of turbulent interfaces. Interfaces between turbulent and non-
turbulent fluid have beer encountered in many flow problems and common features
can be detected. The experimental evidence is however still very sketchy and little
work has been done in which the interfaces were the primary subject. Theoretically
and conceptually the two ouistanding problems seem to be: (i) the detailed
mechanism for the sharply defined edge of turbuleni regions, (ii) the possibility
for “anti-fransition” of not quite randomized disturbances.

The instability of turbulent flows. The large scale motion of the interface often
bears a striking similarily to instability modes of laminar flow. The investigation
of the stability of turbulent flows appears very definitely worthwhile. In particular,
experimentis with controllable initial disturbances should be done. Important tools
for these studies are provided by the recent development of space-time correlation
measuring equipment and of apparatug capable of measuring instantaneous velocity
profiles. , '

The heuristic model of a non-Newtonian fluid to describe the behaviour of the
fine scale turbulent motion seems useful — at least to the writer — to describe
the instabilities and transport properties in frec turbulent flows.





