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SOMMAIRE

Vue d’ensemble, 4 la lumiére des techniques de mesures utilisées, des distributions
expérimentales des valeurs moyennes, en particulier de la vitesse moyenne. e comporte-
ment au voisinage des parois (loi & la paroi) et au centre du tube seront discutés.

Les mesures de NIKURADSE des distributions de vitesse moyenne sont encore les plus
complétes. De plus, celles de REICHARDT, LAUFER, DEISSLER et quelques autres seront retenues.

Toutes .ces mesures, montrent dans la région turbulente au voisinage des parois, nne
concordance approximative avec la distribution logarithmique, avec les valeurs universelles
des deux constantes intervenant dans cette Ioi, Mais, une analyse plus poussée dénonce umne
variation notable des valeurs de ces deux constantes. Elles semblent montrer une certaine
dépendance du nombre de Reynolds. ‘ _ .

. Un résultat analogue peut étre obtenu lorsqué Fon considére la distribution dite
« velocity - ‘defect ». Dans la région centrale, cette distribution de vitesse ne présente pas
une forme parabolique bien définie, sauf en ce qui concerne celles de REICHARDT et PAGE.
C’est ainsi qu’il en résulte une « viscosité turbulente » non constante. L encore semble
jouer Yinfluence du nombre de Reynolds. . ) ‘ o )

Ainsi la similitude basée sur le nombre de Reynolds, et la fixité de la constante de Von
Kirman ne paraissent pas assurées. y - :

Les idées concernant le comportement d'une ¢ viscosité furbulente» dans la région
intermédiaire, et dans la sous couche visqueuse sont encore spéculatives, ‘

La théorie implique pour un fluide incompressible une variation au voisinage de la
paroi proportionnelle au moins.au cube de la distance. On ne posséde pas de mesures
concluantes. : - ; . : _ :

Les résultats expérimentaux plutét rares sur les quantités relatives a la turbulence sont
en général insuffisants et insuffisamment certains, en particulier lorsqu'on se place tout
prés de la paroi, pour donner une opinion décisive. ‘

Dans le cas d’une paroi rugueuse, les données expérimentales sur la répartition des
vitesses moyennes peuvenl étre amenées a coincider avec Ia loi logarithmique en choisissant
une origine appropriée pour la coordonnée normale i la paroi. Mais, ceci présente cncore
une incertitude. ' ‘

D’autre part, les constantes intervenant dans 'expression de la répartition des vitesses
moyennes s'avéreni dépendantes encore du nombre de Reynolds, et de la nature des
rugosités des parois. , .

SUMMARY

. Survey in the light of applied measuring techniques of measured distributions of mean
values, in particular of the mean-velocity. The behaviour in the wall region (the law of the
wall) angd in the core region will be discussed. ' !

Nmxurapse's measurements of mean-velocity distributions are still the most complete.
In addition those by ReicsarpT, LAaureRr, DeisstEr and a few others will be conéﬁder\ed.
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All these measurements show rough agreement in the turbulent wall region with the
logarithmic distribution with universal values of the two constants occurring in it. But a
closer analysis reveals a noticeable variation in the values of the two constants. They seem
to show still a dependency on Reynolds number. A similar result may be obtained when
considering the velocity-defect distribution. In the core region the velocity-defect distri-
butions, with the exception of those by RercuanoTt and PAGE, do not show a definite parabolic
shape. Thus they result in a non-constant eddy « viscosity ». Here too an effect of Reynolds
number seems present. So Reynolds number similarity and the constancy of Von KARMAN'S
constant appear not to hold strictly.

Speculative are still the ideas about the behaviour of an eddy < viscosity » in the buffer
region and in the viscous sublayer. Theory requires for an incompressible fluid 'a variation
at the wall with distance to the third power at least. No reliable measurements are available,

The rather restricted data on turbulence quantities are in general insufficient and not
reliable enough, in particular those close to the wall, to give a decisive argument.

In the case of a rongh wall experimental data on the mean-velocity distribution may
be made in agreement with the logarithmic distribution by choosing a suitable origin for
the coordinate normal to the wall. Baut this still presents an uncertain point. Furthermore
the constants occuring in the expressions for the mean-velocity distributions are found to be
still functions of Reynolds number and of the nature of the wall roughness.

Introﬂuctidn

The steady, fully developed turbulent flow through a straight pipe has been the
subject of many investigations during the last four to five decades (SzanTow [1],
Nigvrspse [2,3], ReicHARDT {4], Pace [5], LAvFEr [6], Dmmssier [7], Nuwxser [8],
AEBBRECET [9], and others). The majority of these investigations deal with the mean-
velocity distribution and with the flow resistance. Only a féw of them also consider
the turbulence structure, Laurer’s measurements being the most complete.

These investigations have led to the following concept concerning - the steady
turbulent flow through a straight pipe. Close to the wall the flow is entirely determined
by the conditions at the wall (law of the wall). At sufficiently high Rry~orps numbers
there is no direct viscosity effect on the flow in the turbulent region of the pipe
(Reyyorns number similarity); so if the difference in mean-velocity with its maximum
value at the centre is rendered dimensionless with the wallfrietion velocity, it should
be a function of the rélative distance to the centre alone. This so-called velocity defect
is independent of the Rexnoups number. Since the turbulent region extends to within
the wall region, there must be an overlapping turbulent region where the veloeity defect
law as well ag the law of the wall hold. This results in the logarithmic mean-velocity
distribution. - '

- The experiments seem to confirm the above concepts. The measured mean-velocity
in the overlapping part of thé wall region appears to be described satisfactorily well
by the logarithmic distribution. Though there is a notable scatter, while the values as
suggested by the various investigators for the two constants occurring in the logarithmic
distribution (one of which is Von K&ruAn’s universal constant) show a less satisfactory
variation. ‘ ' '

, A closer study of the experimental data now reveals that the scatter of data
appears not to be entirely random, but that more or less systematic deéviations seem
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to exist, suggesting that the above concepts might be not strlctly correct. These concepts
result enly in an approximate description of the actual phenomena. 8o the law of
the wall and the velocity-defect law might be only of approximate value, and thes
Von KiruAN’s constant might be not a eonstant and Reyvorps number similarity might
not exist or at the most at much higher ReyxorLps numbers than assumed hitherto.

Tn this paper we shall reconsider the most important experimental evidence in the
light of the assumptions made and which have led to the current concepts mentioned. At
the same time we shall discass the concept of an eddy-viscosity for describing the mean-
velocity distribution, and the difficulties met with when one has tfo a,ccount for the
conditions at a wall of an arbitrary rOughness -

Present Situation

In steady fully-developed turbulent flow through a pipe the flow conditions and
flow pattern are on the average homogeneous in flow direction. The equations delcnbmg
the mean motion reduce to

1 3P 1 d 1 d au

?'a_mz_"; dr (ru,u,,) + r dr (r dr ) M
1 aP 1 d- ui :

= (r = 2
P ar r dr rid)+ T @

These equations are independant of 2. Hence ¥ is a linear function of # and

aP dP,
= S where P, is the mean static-pressure at the wall.
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Integration of the equation of motion for the axial dlrectlon yields
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‘ This equation, and general dimensional arguments suggest the followmg general
funetion for the mean-velocity :

T wr 2 2%
“ut :‘?( M b: D’“’B:---) (N

where k iz a roughness parameter of the wall having the dimensions of a length (e.g.
average roughness height) and e, § .. other dimensionless roughness parameters (as
shapefactor, distribution factor, ete.) B *
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Law of the wall, ~ This law gays that in a small region close to the wall the flow
is solely determined by the wall conditions, i. e. the wall shear stress and geometrical
configuration. This implies that the flow is independent of D and of the flow conditions
in the core region, and that the local shear stress does not differ much from the wall
shear stress (constant-stress region). Hence aecording to the law of the wall the mean-
velocity distribution has the following funetional form :

T * N | |
—f(“ Y. 2, o, ) . ()

_ w* "k
where y is the distance from the wall.

If the wall is smooth or hydraulically smooth, the velocity parameter u* and the
length pa.rameter

are sufficient to describe the flow (gimilarity) :

T wry\ .
— =T 1( - ) - (9)
w ¥ .

If the wall is hydraulically rough «* and % are the velocity and length parameter,
whereas in addition the flow shounld alse depend on the other parameters o, §, ete. :

"U' 5
= a8, . )\ (10)
i f2(

The fact that the flow condxtmns should be indepcndent of the conditions beyond
the wall region must also be reflected in the turbulence energy balance. There should be
no appreciable transfer of energy befween this reglon and parts farther from the wall

(Towwnsenp [10]). For the wall region outside the viscous sublayer the turbulence-energy
equation reads ' '

Urtis ¢ [ U 1 d P ws ve’
. . — — N
u*?  dy* ( u* )+ u*®  dyt "’f(' e 2 ) e )

where

u* #; Ot
y"’: y and ¢ :v?—i’_ﬂ
v o D

Thus the second convective term should be small compared with the local tarbulence-

production term and the local dissipation term, the production term being only deter-

mined by the wall shear-stress and the local mean-velocity gradient.
Velomtg defect latww. — From the general fanction (7) it follows that :

| U w*D 2%

h; L) (12
4

i1

w* 2y D

- It is now postulated that in the tu.rbu.lence region the \elout) defect is a function
of the relative distance only : f"

. 2‘?‘ it

\ i

| e -%( 5 )s; i)
;\‘.

: ' w*D 2k . i i

80 that it does not further dep_end_on , — &, § ... It implies the assumption of

2v D
Reynolds number similarity.
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This should also apply to the turbulence shear stress

Uehy [ 2r

This latter may easily be true, since at sufficiently high Reynolds-number the viscosity
does not coniribute noticeably to the local shear-stress. Hence :

Uy ’l_f@ cwr _ Cap. 2r
2 o~ Pu*ﬂ - B - D . C
If the arguments leading to the ]Jaw of the wall and the velgcity defect law are
accepted, as mentioned in the introduction, a logarithmie velocity distribution results i
for the overlapping turbulent part of the.xwall.region : L oot Nammgond
) E u* | : " Dghen M“
For a smooth wall : —= Aln y+ B (15) o 53\
% v :
_ T y ‘
For a rough wall : -———=A ln7+ B . (16)

Here the constant A is the reciprocal of the Von KArman universal constant .

If the logarithmic distributions would apply to the whole turbulence region, a velocity
defect in accord with (18) would be obtained. However the actual maximum velocity
at the centre appears to be_greater than according to (15) or (16). Hence the velocity
defect with respect to the_actual maximum velocity and valid for the overlapping part
of the wall region reads : ' '

P

ﬁm"‘"‘"’ﬁ
u*

where according,to the Reynolds number similarity A as well as B* should be universal
constants.

—— A Y g (17)
- D T

Ag mentioned in the introduction the measured velocity distributions in a region
close to the wall follow satisfactorily well the logarithmic distributions (15) or (16),
though the values for the constants A, B or B’ as snggested by the various investigators
diverge. The most complete measurements are those by Nikurapse {2, 3]. By way of
example his results are shown in Fig. 1, Fig. 2, Fig. 3 and Fig. 4. For the smooth wall
condition Nikuradse suggested two values for the constants A and B, namely A =25
and B == 5.5 if the best straight line in the semilogarithmic plet is drawn through all
the data points and A =24 and B =0584 if only the region close to the wall

u*y

. <3 000) is considered. For the rough wall condition Nikuradse suggested A ==2.5
and B’ = 8.48, -

‘These results and also thosé from other investigators seem to confirm to a reaso-
nable degree the concepts of the law of the wall and the velocity-defect law and
Reynolds number similarity. Also Laufer’s measurements on the turbulence-energy
balance as shown in Fig. 5 and Fig. 6, seem to confirm the idea that the transfer of
energy by convection, the second term in (11), is negligibly small compared with the
local energy production and dissipation terms. Though the separate convective terms
referring to pressure and kinetic energy respectively are not negligibly small.

Ty
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 The measurements on the mean-velocity distribution indicate that the logarithmic
distribution applies in a wall region in which the shear gtress varies by less than 10 to 20
percent of the wall ghear-stress. Townsexn [10] has shown that at least 90 percent of the
turbulence-energy production takes place in a region where the shear stress varies by
less than 10 percent. If the convective term in the energy-balance equation ig negligibly
small the tarbulence energy production and the dissipation should vary inversely pro-
portional with the distance to the wall, This too seems to be confirmed by Laufer’s
meagurements. Finaily a 10 percent variation in the shear stress results only in a few
percent effect on the mean-velocity distribution calculated on the assumptidn of a congtant
shear-stress, that is within the usual accuracy of the measurements.

Reconsideration of the mean-velocity distribution

Though the considerations given in the foregoing section seem to point towards
the correctness of the concepts discussed and of the underlying assumptions, yet a
closer examination of the available data throws some doubt on them. Consider for
instance closely Nikuradse’s results given in Figures 1 to 4. In Fig. 1 a systematic
deviation from the mean general trend and depending on. the pipe Reynolds number

BBD - ﬁa\fer

v :
logarithmic digtribution (15) are not independent of Rep. The same can be observed with
the velocity distributions measured by others at various values of Rep. In the following
we shall reconsider not only Nikuradse’s data, but also those obtained by Reichardt,
Page, Laufer, Deissler, Nunner and Abbrecht, all referring to smooth wall conditions.
However, it may be worth while to give first a brief description of the experimental
techniques applied in the most important experiments. - o

is noticeable, Thig means that the constants A and B occurring in the

In his smooth-pipe experiments with water as the flowing fluid, Nikuradse used’
pipes of 1 cm, 2 e, 3 em, 5 em and 10 em LD. The mean-veloeity measurements were
made in a section 0.1 to 0.2 mm downstreams of the pipe exit, the pipe having at least
a length-diameter ratio of 70. Since Nikuradse did not observe a difference in static
pressure between any point of a cross section measured with a static-pressure tube
and a hole at the wall, he concluded the static-pressure distribution at the meaguring
gection to be uniform. This calls up some doubt as to the accuracy of the static-
pressure measurements, for due to the turbulence present in the flow through the pipe
a variation of static-pressure should have been observed (see eq. (2)). Thus the mean-
veloeity distribution was measured with a total head tube (1.D. 0.21 mm and 0.30 mm)
and a static hole of 0.8 mm diameter in the pipe flange at 2 mm radial distance from
the jet boundary. Corrections have been made for the measurements pear the wall for
the effect of the finite hole diameter when the distance was smaller than half the internal

total-head tube diameter. It turns out however that Nikuradse applied a constant ghift v
’H;" e s i

of — 7 to make U = 0 at y = 0. This value corresponds with a correction required

&

v " .
1\at Rep — 4.10% and & total-head tube of 0.2 mm ID. This procedure makes that the l)h

mean-velocity data very close to the wall have to be considered with some reserve.
Launfer experimented with an air-flow in a brass pipe of 24.7 em L. D. and a length.
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diameter ratio of ~ 50. The measurements were made in a cross-section 5 to 10 em
o — D .
upstream from the exii at two Reynolds numbers (Upax —— = 50,000 and 500,000). At
. Y :

the lower Reynolds number the mean-velocity was measured with a total-head tube and
a separate static-pressure tube of 1 mm diameter placed 1 cm above the total-head tube,
The total head tube had an ID. of 0.85 mm, with the end flattened to a slit of 0.15 mm
height, Near the wall corrections for the effect of turbulence have been applied

: 1 u2 1/2
Ulourr e IJmeas [ .
[ O ()|

At the higher Reynolds number & hot-wire ancmometer (Platinum-Rhodium 90/10,
diameter 2.5 micron, sometimes 1.25 micron; wire length 0.25 to 0.625 mm for the
turbulence measurements) was used for measuring the mean-velociiy distribulion neur
the wall. A correction for the effect of turbulence was applied by an approximate
graphical method using the known static calibration curve and the known R.M.8, value
of the voltage fluctuations. The maximum correction was roughly 10 percent, the frue
mean-velocity being higher than the observed. Meagnrements with the hot-wire anemometer
near the wall at the lower Reynolds number resulted in mueh too low values after
applying the correction. For the rest the hot-wire anemometer and total-head tube results
were in good agreement. No corrections for the effect of the wall on the hot-wire ane-
mometer measuments were made. Since the point measured nearest to the wall was
about 0.05 mm un appreciable wall cffect may be expectéd. From a comparison of thef
measured shear stress with the theoretical value 11; is concluded that deviations up toi
5 to 10 percent are possible,

Deisgler too experimented with air, but in a pipe of 22em 1 D and a length-diameter
ratio of 100. The mean-velocity meagurements were carried out with a total-head tube of
0.4 mm I.D. and tapered at the outside. For some runs a tube was used with an opening
flattened down to 0.125 mm. No corrections are reported for turbulence effect and for
finite hole diameter in case of measurements close to the wall. The minimum distance

to the wall amounted to roug}ﬂ} 0.05 mm w}nch is smaller than the flattened tube-hole
dnnensmn

In his experiments with air \Tunner used a pipe of 5 em LD. and a length-diameter
ratio of 70. The mean-velocity measurements were done at the exit section of the tube
with a total-head tube of 1 mm I.D. Again no corrections for the turbulence effect and

‘for the finite hole-diameter effect of the total-bead tube have been made, but the miniranm

distance of a measuring point to the wall was 1 mm.

. Reichardt did his measurements in an air flow through a channel (25 X 100 cm) of
1600 cm length. Fine Pitot tubes as well as a hot-wire anemometer were used to measure

“the mean-velocity distribution. No dimensions of these instruments have heen reported.
. The effect of the wall on the hot-wire anemometer was determined experidentally in a

Poiseulle flow through a small channel (3 % 30 em). The wall-friction velocity u* was
determined from pressure-drop measurements. At low velocities this procedure was not

U .

~ values by making them in agreement
u .
with Nikuradse's values at the larger values of , namely in the turbulent wall region.
. ' . v . . .

very accurate. Thus Reichardt corrected the
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Let us now consider Nikuradse’s measurements with a smooth-wall tube. He made
the measurements at 16 values of Rep, the lowest value was 4.10® and the highest valune
3240.10° In Fig. 7 the data as corrected by Nikuradse are shown for 10 out of the
16 values of Rep. For the sake of clearness the data pertinent to a certain value of
Rep are shifted over a distance of 1 cm in vertical direction. The left-hand geale refers
to the data at Rep = 4.10%, the right-hand scale refers to the data at Rep — 3240.10%,
The straight line through the data at Rep — 23. 310-5 is Nikuradse’s average line with
A =24 and B = 5.84.

In Fig. 8 the data for the veloelty defect as g1ven by Nikuradse and pertment to the
same Reynolds numbers are given. These data have not been cotrected for the-effect of
finite total-head tube diameter in the region close to the wall. '

These two figures show that none of the meusured mean-velocity distributions
follow the average trend as given by Nikuradse, and obtained from all data at varioms
Reynolds numbers together. Though there is some uncertainty in fixing the straight line
through a series of points, because these points also have to deviate from the straight
line towards the wall and outside the wall region, yet the individual straight lines show
clearly a higher value for the slope than A == 2.4, and increasing with increasing Rep..
At the same time the value of the second constant B decreages with-inerepsing-Rep. At
the lower values of Rep the values of A obtained from the velocily-defect distributions
differ from thoee obtained from Kig. 7, which might perhaps be attributed to the faect

that the velocity-defect data were not corrected. The constant BT also appears tu
decrease with inereasing Rep.

The same general trend, namely an increase of the constant A with increasing Rep
can also be observed from the data obtained by the other investigators, with the excep-
tion of Laufer’s data where the value of A at the lower Reynolds number is higher than
at the higher Reynolds number. Figures 9 dnd 10 show the results of Deissler’s and
Reichardt's mcusurements.

The general trend of variation of A, B and B* with Reynolds number is shown in
Fig. 11. If we compare the results of various investigators, there is quite a difference in
values of A and B for the same Reynolds number. Figures 12 and 13 show the
velocity-distribution and the velocity-defect distribution measured by various inves-
tigators and referring to roughly the same Reynolds number.

Complete series of velocity-distribution measurements at various Reynolds numbers
and with varying roughness factor, have only been made by Nikuradse. As is well-known
Nikuradse made the pipes artificially rough by glueing sand grains of a narrow sieve
range on the inner pipe wall. For the mean-velocity measurements Niknradse applied the
game technique as in the casé of his smooth-pipe measurements. He did not correct the
measurements close to the wall for the effect of finite total-head tube diameter. 8o the\;
data close to the wall are not very reliable. Another uncertainty is presenied by thei
fact that the origin (y = 0) of the mean-velocity distribution is not well known. It should
lie somewhere between the origi_ual smooth Wall and the average crests of the roughnees

water and by calculating the eguwalent radiug of a plpe havmg the same volume per
1 unit length as the volume of water contained in the rough pipe per unit of length

Lofenclie . Yewbe  Vta/feg
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Velocity-defect disiribution measured by varions investigators.
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Nikuradse used six different sizes of sand grains, so that it was possible to vary

D
the relative roughness '—E;between 15 and 507. Figure 14-shows the velocity distribution

S D
in the wall region for the two roughnesses e = 15 and 252 and at various Rep. The

data referring to the points-with a distance less than the total-head tube diameter from
the wall have been omitted. Figure 15 gives for the same two roughnesses the velocity
defect, If in the semi-logarithmic plot again a straight line is drawn through the points
of the overlapping region, it appears that here too the constant A shows a similar
dependence on Rep, though less pronounced, than in the case of a smooth wall. The
variation of the constants A, B’ and B* with Rep is shown in Fig. 16. '

Hitherto we have mainly considered the turbulent overlapping part of the wall
region, whose mean-velocity distribution may be approximated by a logarithmic distri-
bution. Outside the wall region, i.e. in the core region deviations from the logarithmic
distribution oceur, Of course it is possible, as suggested by Millikan, to introduce a
correction function which in the velocity-defect representation showld be 'a universal

2r ‘
function of the relative distance--—l—)—- it the Reynolds number similarity would apply.

Induced by the almost parabolic shape of the velocity-defect distribution in the core
region it has also been suggested to approximate this distribution by the following

function _
ﬁ ax o T—J 2" = ‘
e R (—) (18)
ot D
In the case of Reynolds number similarity » should be independent of Rep.

A purely parabolic distribution is obtained for # — 2 which would imply a constant
ratio between the local shear stress and the mean-velocity gradient (constant eddy

viscosity).

~ The function (18) has been applied to the velocity distributions measured by the
mentioned investigators, Figures 17 and 18 show the results for a smooth pipe and Fig. 19
for a rough pipe. From these figures it is concluded that in general only a part of the
velocity-defect distribution in the core region may be approximated by the function (18).
Deviations not only occur towards the wall region (as it gshould be), but also in the
region at the centre of the pipe. Furthermore the exponent # is only close to the value
of 2 in Reichardt’s and Page’s resulis obtained in a channelflow. In general it is much
less than 2 and shows some variation with Ren. This latter iz shown in Fig. 20. '

The eddy-viscosity concept

The logarithmic Velocity-distribuﬁon has been obtained from general arguments i}
concerning the law of the wall and the velocity-defect law. But as known, it can be

obtained also direct from an integration of the equation of motion, if the turbulence
shear stress is assumed to be directly proportional to the local mean-velocity gradient,
and that the coefficient of proportionally increases linearly with the distance y to the
wall. This coefficient of proportionality is usually referred to as the eddy-viscosity
€ of the flow. The logarithmic velocity-distribution is obfained if it is assumed that
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«

€= ——uty (19)

A

Algo the velocity-defect distribution given by the function (18) is obtained 1f a
suitable variation of ¢ with » in the core region is ussumed, namely

u*D Dp \E—m ' ‘ 7
€= ( ) (20)
nK D : .2

In prineiple the introduction of an eddy viscosity may not be emreet for it is not:

certain that the turbulence shear-stress pil. %, can be expressed in terms of purelv local

quantities, such as the local mean-veloclty gradient (see e. g. ref, 11 and 12, chapter 5). | v
For if the eddy-viscosity is written € = «’ 1, for a gradient-type of transfer the length 1 Yot
‘ghould be so gmall that the mean-velocity gradient may be considered as almost constant »
in a region of the dimension /; this means for instance that I should be small compared
with Von Kéarmén's mixing length divided by the Von Earman’s constant., In turbulent
pipe flow «’ may be taken of the magnitude w*. With the current values for e in:pipe
flow it then turns out that I achieves values which do not or hardly satisfy the condition

for a gradient type transfer, in particular in the wall region and close to the centre
of the pipe.

Y st

&

If in the region in the vi.cin:ity of a smooth wall #* and are the only parameters |

AR
*

€
describing the flow, —— should be a umversal function of
v

f

E
Slmllarly 1f Reynolds :
]

€ "2
number gimilarity holds for the core region, --—-ﬁ shonld be a universal function of -5 ]
uw*

Since experimental evidence seems to indicate that in the turbulent part of the wall
region and in the core region the values of A and n respectively are not independent of

£

Rer also % and e must be dépendent still on Ren.%
o

Since the values of € are obtained from a differentiation process applied to the mean-
velocity distribution, which procedure is pretty imaccurate, these values cannot be very
reliable. Moreover the velocity distributions as measured under the same flow conditions
(Rep) by different investigators in particular in the core region, still show important
differences. See for instance Figure 17 and 18, and the appreciable variations at the same
Rep in the value of » shown in Fig. 20.

NIKvRADSE has determined the values of € for the turbulent region of the pipe flow
not from a graphical differentiation process of the mean-velocity digtribution, but from !
values of the local mean-velocity gradient measured directly with two tiny total-head
tubes placed close to each other. His results show that with increasing distance from the

. ‘ 29 .
wall € first inecreuses almost linearly, obtains a maximum value at —DLN 0.5 and

decreases with further increasing d1stance to a sha,rp minimum at the centre of the p}pe?\

There is gtill a depeudence of on the Reynolds number, it decreases slightly with

increasing Rep. Figure 21 gives a plot of against Rep with the relative distance

G
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where
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2y

e parameter, where this decrease with increasing Rep is clearly shown. Tn the

. 2e '
{! core-region, however, - D approaches a constant value at very hlgh Reynolds numbers

(Rep > 10° to. 10%), but as the wall is approached there is still a decrease even at the
highest values of Rep.

The same trend is observed for the flow through a rough pipe. Figure 22 shows this

R § :
trend for two relative roughnesses = = 15 and 252. There appears to be still a viscosity

-

effect, even at conditions which are usually referred to as hydraulically rough. At thm
condltlon the friction coefficient is assumed to be independent of the Reynolds number
But, as may be expected, the friction coefficient must he much less sensitive to the addl- :

tional viscosity effect as observed on the eddy w.scos1ty and .on the mean velomty distri-
bution,

4‘3 - If the wall is approached the eddy- mscoszty decreases rapidly to- zero, in the

%:} turbulent region linearly with the distance to the wall, but in the transltlon region and
ul

viscous sublayer at a much greater rate, Figure 23 shows the variation of — With y
v v

in the region Llose to the wall, as obtained by Aemrgcmr and CEURCHILL from their

i mean-velocity distribution measurements at a ‘Bep ~ 65.10°. From the mean-velocity

i distribution in the turbulent overlapping region A — 2.61 is obtained, so that the linear

€ € u* ®
| part of the -— curve is given by the equation — = 0.38 . In the region
v v

MLESERR. Y

Y <30

€ ' o o uf
—- geems to follow a quadratic relation with
Y

, but there are theoretical reasons

to believe that the decrease with decreasing distance must be at a still higher rate as
¥ —> 0 (see e.g. ref, 4). If the fluid is incompresgible a series expansion of the axial and

i radial turbulence velocity components u, and «, yields

— Uy b, =g ¥ + ag Yyt 4 ..
= e Dty Dtz © [ ous ]
_2 ( ) (ay) +(ay )o o2 (ay.)o
) )
_4 0 DT \ DY /o 22 Jo o2 \ 3y Jo
Qu.\ '32%) (3%) [} (a‘*‘w)]
t [( ) (ay o,+ 2y o2z \ % Jo

€
‘ Bo the turbulence shear-stress — il um % and consequently the eddy viseosit‘y —
) v

and

; ;decreases at least with y® as y— 0. In s steady Q pe flow which is homogwneous in_axial
1E1rect1on the first term in the expression for oz is zero, but the seeond term need not be
3
1

sarmchre A

ecessarily zero. The available experimental evidence are entirely insufficient to give

£

€
any decision as to the actual behaviour of — very close to the wall,
A
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The above results concerning the effect of Rep on — or — 5
. v U _ :
not so very surprising, since the detailed turbulence structure is strongly affected by

are as matier of fact

vigcosity. The data on the turbulence structure in pipe flow seem to indicate that the -

W - _
relative turbulence intensities — ete. are still, slight, funetions of Rep. Similarly the
: % .
integral scales of turbulence seem to decrease with increasing Rep. Though it must be

admitted immediately that the number of available data is st111 very small and the data .

are not very .Lc,Lurafe

The roughness problem

A few words may be devoted to the problems which one has to face if the turbulent .
flow along a rough wall has to be described. In the gection on the mean-velocity distri-

bution, when discussing NIKURADSE's experiments with rough tubes one problem has
been mentioned dlready, namely to establish the effective origin of the mean-velocity

distribution. The way in which NIKURaDSE has « solved » this problem need not be the
correct one. From meun-veloeity measurements in the flow past a wall on which were '_
fitted hemi-spherical elements Emvsreix [13] concluded that the effective origin shonld

be taken at 0.4 k below the top of the elements, in order to obtain a satisfactory straight
portion in the semilogarithmie plot direct beyond the roughness elements. In general

this effective origin may be found by trial and error by replotting the mean-velocity
distribution with various positions of the orlgm till a satisfactory straight portion in

the above plot is obtained, .

Another, more complex problem is how to take into account the eﬁect of non-uniform
roughnes and different types of roughnesses. It is well-known from measured friction
ceefficients that if the roughness is of 2 wavy nature with an average amplitude small
compared with the average wavelength there is a pronounced Reynolds number effect
almost similar to the effect with a smooth wall, and quite different from the effect of
sand roughness. Also the shape, configuration and size distribution of the roughness
elements have been found to have a marked effect on the flow. It is obvious that one
single roughness parameter & must be insufficient to deserlbe the effect, This effect
can be demonstrated clearly as follows.

If for the moment we assume that the Reynolds number similarity and the law
of the wall still hold to a sufficient degree of approximation for the following conside-
ration then from the velocity-defect law it is concluded that the effect of the wall rough-

T,
ness has to be found in the value of —

, which may differ from the smooth wall

condition by a value . Also, as Hama [14] has shown, the velomty d1str1but10n

u
in the turbulent part of the wall -region may be written . .
U u*y AT ' Aa e T
u* .'“_‘.' A In " + B -_— u* -_{;\\ L/ aaRe
where o ' :
AU u*k I
= A In .+ B—B S

/ ‘ .
(» /‘\ :VO /JW‘\’}{
o
- _,_,—‘"'"‘(r‘\ .
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Now if the parameter k& would be sufficient to account for the observed effect,

should be a universal function of k. Figure 24 reproduced from Cravser’s [15]
*

as a function of

publication, shows
w* K ¥

for various types of roughnesses.

From this figure it is concluded that the shift

u* k
is only proportional to.ln
‘ v

u*k

with a constant of proportionality equal to A at suffunent large values of

(hydraulic rough condition), but that B — B’ depends on the type of roughness The

*

value of beyond which the wall may be considered as hydraulic ‘rough also

depends on the type of ronghness.

Figure 25, aguin shows for mand roughness according to NIKURADSE’S

1
measurements, and a few data obtained from Nunnew’s publication for a certain type

of artificial roughness. These latter data demonstrate for the same roughness elements
the important effect of the geometrical configuration.

Hitherto the difficulty in obtaining the correet parameter(s) to account for the
effect of a certain type of roughness has been got round by the introduction of. the
“equwalent sand roughness ko Awhich is the sand roughness which produces at the same
Reynolds number Rep the same friction coefficient as the aciual roughness. In principle
it should be always possible to obtain such a value of k, for any type of roughness, but

it haz only practical value if thiz equivalent sand roughness for a certain type of
*

rbughness is independant of . Figures 24 and 25 show this is not always possible,

especially if the wall condmon is not hydrauhc rough so that the direct viscosity
effect iz still appreciable,

Townsenp [10] has suggested to introduce another roughness factor % which makes
that the logarithmic velocity distribution for a hydraulic rough condition of the wall (16)
contains the same valne for the constant B’ as for smooth wall :

ﬁ‘.
— = Al
u*

The relation between k&, and & is

=B—FB

But in principle the objections made against the use of an equivalent sand roughness
also apply here -

‘Not yet satisfactorily solved is the case of composite roughness. A simple example
of it is found when the wall is «wavy» on which is superimposed an irregular
roughness of a much finer scale. If the difference between the scale of the wavy roughness
and the irregular roughness is large, the flow may be considered as to take place along
a wall of the fine irregular roughness, but which is undunlating instead of plane, So the
axial mean-pressure gradient is not uniform in fiow direction.
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REMARKS ON THE MALKUS THEORY
- OF TURBULENT FLOW

by A . A TOWNSEND
Emmaquel College, Cambridge

SOMMAIRE

Le but de cette revue est:
1) De presenter les grandes lignes de Ia théorie de la turbulence de Malkus, ainsi que
les faits expérimentaux qui semblent montrer (ue cette théorie donne une meilleure descrip-

‘tion des écoulements entre parois planes et paralléles, que les théories phénoménclogiques
nsueles.

2} De considérer la facon dont les hypothéses de cette théorie sont reliées aux eonnais-
sances acquises des structures turbulentes, fondées sur les mesures, et traduites sous forme -
de concepts 4 partir de la théorie statistique de Ia turbulence.

3) D’insister sur certaines des difficultés qui surgissent lors de Vapplication de ces
concepts a des écoulements turbulents en cours de développement,

SUMMARY

The purpose of this review is (i) to present an outline of the Malkus theory of turbulent
flow and. the experimental evidence that seems to show that the theory gives a better
description of flows between parallel plane surfaces than current phenomenological theorics,
{ii) to consider the way in which the assumptions of the theory are related to existing
knowledge of turbulent structure based on measurement and interpreted in terms of concepts
from the statistical theory of turbulence, and (iii) to point out some of the difficulties that
arise in the application of the concepis to developing turbulent flows.

1. Introduction

Since 1935 when G.I. TayLor initiated the statistical theory of turbulence, nearly
all work on the fundamental nature of turbulent flow has been strongly influenced by
this theory and by the hope that some day it would develop into an analytical theory
derivable from the equations of motion and capable of describing shear flows without
arbitrary assumptions. A considerable amount of effort on these lines has left us with
a detailed experimental knowledge of a variety of flows and a body of theory which
applies mostly to homogeneous turbulence and which depends on assumptions that are
arbitrary and, in their own way, as open to question as the assumptions of mixing;
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length theory. Moreover, the extension of this theory to inhomogeneous ghear-flows
presents difficulties that can only be overcome by making additional and far more
dubious assumptions, so that most current theories of shear-flow are frankly phenomeno-
logical and differ only in the amount of attention paid to the fluctuating motion. In spite
of its failure to realise our hopes, the statistical theory continues to provide the frame-
work and concepts for our understanding of the basic procésses in turbulent flow, and
this makes it difficult to appreciate fully a theory of turbulent flow based on quite
different concepts. The theory of turbulent flow put forward by W.V.R. Matxus in

1954 rejects two characteristic features of the statistical theory, the detailed satisfaction
of the equations of motion and the use of mean values other than those describing the
macroscopic transport, and introduces a number of new assumptiong of a thermodynamic
rather than a mechanical nature, This novelty and the complexity of the associated
mathematics has made for slow appreciation of the merits of the theory, but the
evidence that has accumulated to show that its predictions describe the transport of
heat and momentum between parallel planes better than do the phenomenological
theories calls for further study and a little bridge-building. The purpose of this review
is to discuss the basic assumptions of the theory and their justification, the experimental
observations that confirm its predictions, the relation of its concepts to the concepts

of the statistical theory and the posmblhty of describing developmg flows by a modified
form of the theory.

2. Noi:atinn

The flows considered are between parallel, horizontal plane surfaces, and are
described in a co-ordinate system with Oz vertically upwards and Oz in the direction of
mean How. The bounding surfaces are 2 = 0, 2 = D, and position in the flow is specified

by the non-dimensional vanable, ¢ = % with a range of 0 — x. Pressnres and stresses

are «kinematic », i e. their mechanical values divided by the fiuid density. The Hnid

is considered to be incompressible and it is assumed that effects of gravity are
limited to variable weight. Then,

" UG+wu,o,w  are the instantaneous components of velocity;

U is the mean veloeity;
T+ 9 is the instantaneous, absolute temperature;
T is the mean temperature ;
P is the mean pressure;
1 dP .
To = _7]) e is the hear—stregs on the lower boundary:
T H=p,TQ is the ‘upward, flux of total heat (enthalpy);
v is the kinematic viscosity; '
K is the thermometric conduetivity;.
T, ig the mean absolute temperature at z — -»12— D;

Ty, T are the temperatures of the lower and upper surfaces.
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' 3. The basic assumptions of the theory

In its original form (MALKUS, 19:;4?1 1956), the theory is applicable to stationary
flows, statistically ‘homogeneous on planes parallel to the bounding surfaces, and he
has carried out the necessary calculations for Poiseuille flow between parallel, plane
boundaries and for heat convection between horizontal, parallel planes. Consider the
Poisenille flow first, The rate of turbulent transport of momentum can be expressed
as an infinite series of orthogonal functions, for example as a Fourier series, -

T = 2 br 8in 270 | 3y

and the first assumption is that a satisfactory description is obtained by terminating
this series after ny terms, the value of n; depending on the Reynolds number of the
flow. This assumption is physically consistent with the restrictions imposed on % and
by the presence of the boundaries only if cach one of the set of orthogonal functions
satisly these regtrictions. For solid boundaries, circular functiong de not satigfy this
condition but the proper orthogonal functions resemble closely circular functiong execept
‘within a wave-length of the boundaries and, for the present purpose®, the difference
may be neglected. Since the averaged equation of motion for Poiseunille flow is

AT 21 U
= + v
, - dz 2D ds?
equation (3.1) may be written in the form,

a? A\ ' :
: = M a;con2cd : 3.2
dd? e * 2)
-
where
o — oD
T ey

The values of »y, and the remaining a,s are then determined by requiring that, for a
given total flow, the energy dissipation of the flow is to be a2 maximum with respect fo
variations of ny and the a,s such that

2
‘ A o , _
an_d that an infinitesimal disturbance of the form corresponding to the last term is
neutrally stable in a laminar flow with the same distribution of mean velocity.

When these conditions are satisfied, non-linear interactions between the modes of
motion represented by terms in the series (3.2) and other turbulent motions not trans-
ferring momentum are supposed to be gufficient to keep the mode amplitudes stationary
in time, that is fo gay, nonlinear transfer acts as a stabilising influence. This influence
is negligible on the mode of highest order which is neutrally stable in comsequence of

<0 (0< B<m (3.3)

*

ie. the determination of the veloeity profile outside the _viscbus layers. ‘ "
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, effects considered by ordinary stability theory of infinitesimal disturbances, 1. e. a balanee

) between energy-transfer from the mean flow and energy-loss by direct viscous diseipation,
These effects of nonlinear energy transfer should be distinguished from the energy-
transfer between eddy components as considered in the statistical theory (see for
example BarcrELOR, 1953). The modes of motion considered by Malkus are motions
obtaining energy directly from the mean flow and losing it by noun-linear transfer to a
¢ background » of nearly isofropic eddies which contribute nothing to the momentum
transfer. The background is not described by the theory in its simple form and includes
those parts of the turbulent motion which are in a condition of local similarity.

2

The restriction T X 0 excludes points of inflexion in the velocity profile which

lead to inviscid instability in the flow, This kind of instability is known (o be much
stronger than the viscous instability of flow without points of inflexion, and it might

be expected that the appearance of these points would generate additional non-linear
iransfer tending to destroy them.

The requirement of maximum energy dissipation subject to the various restrictions
is qualitatively reasonable but not the only plausible extreme condition, The qualitative
justification is that, as the Reynolds number of the flow becomes very large, the velocity
profile must become more and more flat-topped and tend to a constant value equal to
the mean flow velocity with discontinuities at each wall. Since the total energy-dissipation
is proportional to the velocity gradients at the walls, maximum dissipation corresponds
to.a best approach to the asymptotic shape for infinite Reynolds number. Other requi-

rements can be found with the same asymptotic behaviour but their physical meaning is
less clear. ' ‘

It is natural to ask how much do the theoretical predietions, particularly those
most easily tested by experiment, depend on validity of the four main major assumptions,

(i} Description of transport by a finite series,
(ii) Marginal stability of the last member of the series,
d2
(111} “E—z? '--<._ 0:
(iv) Maximum energy-dissipation. .
MavLxus (1960) has painted out that the form of the velocity distribution for 7 sin & » 1
is -determined substantially by conditions (i) and (iii) alone if the coefficients @, are

distributed smoothly, i e if |g-—a, , lz

and he finds that maximising the
o

_ dissipation with np constant and then determining =, by condition (i) gives very nearly
the same result as maximising for variation of #, as well. This suggests that the form,

though not the scale, of the .velocity distribution is a consequence of termination
. 21T

of the series and the condition o < 0. This distribution can be oblained in an interes-

ting way by considering the best way of approximating to the asymptotic distribution
. 2

with a finite series gwmg non-pogitive values for Intuitively, we expeet this result

& U
of values of 757 2 nearly zero as possible everywhere except very close to the walls if

&2
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T3 takes the value. zero for as many equally spaced values' of @ as possible, and all of

these must be double zeros. Since

y

Z a; cog 2 ¢rd
0
can be expressed as a polynomial of degree 2n, in cos & (which is a single-valued
function of ® in the interval 0 — x), ny double zeros are possible, The function
sin (g + 1) $\?
( sin ¢ )
may also be expressed as a polynomial of degree 2n, in cos &, has #, double ZETos$

equally-spaced at &, = 1 and so satisfies these conditions. Then

&2 U sin? ne
S Wil Uk 34
ad? sin? @ .
where ny and the constant A are determined by condition (1i) and by the equation of
mean motion®. Tf 5y sin & » 1, the numerator oscillates rapidly with a mean value

o +

1 : .
of rY and, if these oscillations are ignored,

PU_1, e
_dqﬂm—z cosec

aind .
1 N
Ua—U= —5— A log (sin @) {3.5)

where U, is the velocity at the channel centre. While the distribution (3.4) has the
d* U

maximum number of equally-spaced zeros of - for a given value of n,, distributions

of the form

\ sin? (%0 -4 1) [
28] sin? (ng + 1
. - A, (' ﬂ-l- )¢ + Ay _
. d¢? pin? sint ¢
may also be written as a series '

o

W) .
Z @, cos 2rd

[\

and approach the asymptotic distribution as ny becomes large. If the second therm is
moderately small compared with the first, conditions other than maximum energy-

* Since circular functions have been used in the series (3.2) rather than orthogonal functions
satisfying the boundary conditions, this expression is inaccurate close to the wall. Outside the

viscous layers for nysin® » 1, it is a good approximation to the result that would be obtained from
the use of these orthogonal functions. - ' :
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for nysin ® » 1, and a comparison with (8.5) shows that the form of the velocity dis-

. As ‘ ,
tribution is nearly unchanged since -12— o= Mo~ # if the second term in (3.6) is to be

)
nowhere dominant. This indicates that the exact nature of the extreme condition will
not change the predicted distribution in form unless it departs considerably from the
physieally plausible condition of maximum dissipation.

Applying the condition of marginal stability of the highest mode to determine the

constant A in equation (3.5), Maxus (1956) finds that this equation takes the form
Un— T |
.y

1, .
=~ 9% log (sin ®) (3.8)

1 .
where 5 g7 is a constant (~3) arising in the theory. This distribution is of the

« velocity defect » form known to describe the mean flow in pipes and channels over a
wide range of Reynolds number, it reduces to the wuniversal logarithmic distribution

1
for # « D, the theoretical value of the constant Y g7 is within 20 % of the experimental

value, K—' = 2.5, and the complete form agrees very well with the measnrements of
LavrER (1951) in a two-dimensional channel. The velocity defect form and the logarithmie
digtribution near the walls are also predicted by similarity and mixinglength theorieg
of turbulence,

. The analysis of heat-transfer between parallel, horizontal planes by matural con-
vection is very similar, but now any part of the flow in which the tfemperature increases
upwards is definitely stable so that it is reasonable to replace the condition (iii) for
Poiseuille flow by the condition ' :

dT :
—— <0 (3.9)
dz

Then, éxpres.-aing the mean temperature gradient in the form,
dT |
= N 6, cos 200 (3.10)
dz
0

since thé constant flux of total heat is .
" Dt eopad
— = plg K —— Cpty
o | _ PCp iz 0
the arguments used above show that :
| @ T—Tp sint(ng+1)®

b " w(mp+ 1) sin? &
where Ty, T, are the temperatures of the lower and upper boundaries*,

(3.11)

* Again the use of cirenlar functions rather than orthogonal fanctions satisfying the boundary
conditions limits the validity of this expression to paris of the flow where n, sin & » 1.
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Tgnoring the oscillations as before,. _
Ty —Te k7
cot
27 (ng 4+ 1) : D
for wgsin®d » 1. The value of ny is to be determined by the condition of marginal
gtability and Marrus (1960) shows that the mode of order n, 1s marginally stable in this
temperature distribution at a Rayleigh number of
g (T,—Ty) D?

R= =R, (ng+1)% : , (3'.13)
P, vK :

where R, is a constant depending on the nature of the boundaries. Approxirﬁate theore-
tical considerations indicate that its value for rigid boundaries is 2533, :

From equations (3.12) and (3.13), the distribution of mean temperature outside the
conduction layers is found to be

T—Tu _ 1 Re 1lsct -4 (314}
T,—T, 2z \r/ D o

Unlike the velocity distribution (3.8), this temperature distribution has not the form
predicted by similarity theories, which iz

T—T, =

(3.12)

T _ Ta, ‘ z
e — Q2 (g DY 18 p— 3.15
=g D) (2) .15
and, forz ¢« D,
_’Jl‘i = o Q2 (gz) =113
T,
where Q == is a convenient quantity for describing heat transfer. From equa-
pCp ) ‘ '
tion (3.11), the heat-transfer coefficient is ‘ _
. Q D Ta (R )1 e ‘
ermemer e =2 1) = 3.16
Ty T (o-i- )= R,, (3.16)
and the temperature distribution outside the conduction layers is
| T T, v U2 §o 2 n7
——=—E cot - B.A7
‘ T, ( K 0) 2= D. D ( }
or,forz « D, . . ‘
. T Tq, y y1/2 en Zo .
e 22 [ — R, gt 318
T, (K 8) 2m2 . ( )

where 0 == Q% (kg)~14, 2, = K%/ (¢ Q)1/%. Notice the different scales of temperature
variation in the defect equations and in particular the different functional forms of the

predicted temperature variationg for small o Measurements of mean temperature in

this system provide a crucial test of the Malkus theory.

4, Experimental evxdence

In I’mseul]le flow, the ability of the Malkus theory to describe the mean flow is
rot markedly superior to that of the similarity theories. These theories predict thats
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same form of defect-law and the logarithmic form near the welly, and their prediction
of the universality of this distribution and some related ones for rigid boundaries
{TowxsEND, 1961) may be balanced against the numerical predictions of the Malkus
theory. I'or this reason, experimental tests of its validy require measurements of heat
convection between parallel planes or in equivalent flow systems. The simplest of these
are not decigive. Both similarity and Malkus theory predict that the heat-transfer
coefficient is proportional to the cube-root of the Rayleigh number, but the Malkus
theory gives a fair estimate of the constant of proportionality and asserts that it is
independent of ~:—. Thiz has been confirmed experimentally by measurements of heat-

transfer in air (TEomas & Towwsewp, 1957; Townsenp, 1959) and in water and acetone
(MarLkvs, 1954a).

The measurements of vertical distribution of temperature have all been made in
air and, with the exception of three distributions between parallel planes (Tmomas &
TowxsexD, 1957), they have all been made without a definite upper boundary on the
assumption that the distributions are similar to those with the upper surface at a

2
great height. It is convenient to write the respective predictions for 5 & 1lin the forms,

T _ TQ
g =clpzpz? MarLkvs (4.1)
T—T,
= ¢ O 2p}/3 z—1/8 SmMiLarITY (4.2)

defining 8, = Q*?® (g #,) '/® and regarding 2 as an intrinsic secale of the flow, equal to
k3% (gQ)~1* if the surface is smooth. (Note that the value of 2, does not affect the
similarity prediction.) In the laboratory, D.B. Tromas and T have made extensive
measurements of mean temperature vver a smooth heated plane and, outside the condue-
tion layer, these measurements conform wel with the Malkus #—! variation, The simila-
rity #—'/% variation could not be fitted to the measurements and the character of the
temperature fluctuations was found to change with distance from the surface in a way
that is completely incousistent with the basie assumptions of similarity theory. This
was most clearly shown by changes in relative duration of the alternating « active »
periods of rapid and large fluctuations of temperature and ¢ quiescent s periods of much
weaker fluctuations. The basic assumption of similarity theory is that the structure of
the turbulence is everywhere similar except for scale changes and go a dimensionless
quantity like the relative duration should be independent of position in the flow. As can
‘be seen from figure 1, it decreases fairly rapidly with height above the heated surface
and this is strong evidence against a self-gimilar structure.

The existence of active and quiescent periods in a fully developed and full turbulent
flow is rather surprising, particularly as there is no corresponding effect for velocity
flactuations. 1t is found that the mean temperature T, as determined by extrapolation
of the mean temperature distribution, but the mean temperature during the active
periods is comparatively high and these periods seem to he cansed by columns of hot air
which lose heat as they rise through the surrouding cold, turbulent flnid. Since these
columns have their origin in the conductive.viscous layer of thickness approximately
3 2o, their original distribution in space and time will be. determined by the thickness
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and scale of the motions in this layer, and, so long as the mean temperature depends
on the presence of these penetrating columns, their ‘original distribution and the
quantities specifying it will be expected to have an influence on the distribntion of tempe-
rature. For this reason, it seems reasonable to regard z, as an intrinsic scale of the
convection, important at all heights because the mean temperature is determined by the
occurrence of penetrating columns originating at a height where the scales of the
velocity and temperature fields are of order 2. In the particular case of convection over
& smooth plane, the intrinsic scale has the value &4 (¢ Q)~1* given by the thickness

of the conductive layer, but there are other possibilities, ec. g 11: might be set by the .
“wavelength of a corrugated surface. .

The notion of an inirinsic scale as the essential difference between the pictures of
heat convection presented by the gimilarity and by the Malkus theories has an interesting
application to the problem of mixed convection between parallel planes. Within a layer, .

<] ’ e
Y « 1 in which shear-stress and heat-flux are nearly constant, dimensional reasoning

shows that the distributions of mean velocity and mean temperature are of the forms

au nhi2 2 ‘
_ _f(_) (4.3)
dz fez L . :
1 4T Q 2
—_ —_— s 4.4
T da b <12 2 g(L) (*4)

where L = 1% (kgQ)~"' is the Monin-Obukhov length, if the direct influence of viseosity
and conductivity can be neglected. This is possible not so close to the surface that viscous
and conductive transfer are important, provided that the presence and properties of the
viscous-conductive layer have a negligible effect on the general motion. Many experi-
mental measurements show that this is true for layers with negligible buoyancy forces,
at least so far as these mean properties are concerned, and we expect that, if there
is a turbulent layer with negligible buoyancy forces separating the surface from layer
from the buoyant flow, visecosity and conductivity (and surface conditions generally}
will have a negligible effect on the mean gradients. Since L is a measure of the height
at which generation of turbulent encrgy by buoyancy forces first becomes comparable

: z
with generation by shear, the motion for large values of I is dominated by buoyancy

A4
effects and a regime of natural convection is expected, differing from convection with

zero shear-stress only by having a velocity of translation and probably a changed value
of the intrinsic scale. Since the change from dominant shear to dominant buoyancy takes
place at heights of order I, the characteristic penetrating columns of natural convection
arise at a height where the turbulent scale is of order T, and we would expect the
intringie scale to be a constant multiple of L. ‘

~ These conditions of constant shear-stress and heat-flux are satisfied in the lowest
few hundred metres of the earth’s boundary-layer over & homogeneous surface, and the
temperature distributions have been studied intensively {see, for.example, PRIESTLEY,

A

1959). Tn unstable conditions with % more than 0.03, most of the measurements seem

to confirm the similarity prediction that the gradient of potential temperature is

12
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1 4T
T dz
where Hp is a constant near 1.0, but if is strange that a theoretical prediction assuming

natural convection should be valid. when energy production by shear greaily exceeds
the production by buyoancy forces. The suspicion that the turbulent transfer in this

- HY? Qs 9*113 a4 ‘ (4.5)

2
range of fris not completely independent of the wind.shear is confirmed by the work

of Wesp (1958) who made_m'easurements in conditions of strong instability and found
an upper limit to the validity of the similarity prediction. Beyond this limit (approxi-

mately at . = 0.45), WEBs observed a rapid reduciion of temperature gradient below

the values predicted by the similarity fheory. Figure 2 iz a copy of a diagram from
Weee's paper and shows the variation of the temperature ratio
' 1 T3 — Ts
1-51log 30/8 / dT
( dz )1-5

: g dT [/ dU\-2 ) | .
with Richardson number, B, = T o , at a height of 1.5 m. (the subscripts
: @ 2

refer to ihe height of measureméent in metres). Lines have been drawn to show the

variation of this ratio for forced convection’ ( 7
‘ 2

mz“‘), for similarity convection

dz .
while

daT ‘ ) 2
(--—o: z—.‘*fs) and the calculated variation assuming that (4.5) is valid for I < 0,45

1 47

o 059y VSRR g 4.6
T i 5 9_ .Q_ {4.6)

for T > 0.45. This is exactly the Malkus predicltion adapted for the mixed-convection

flow by the nse of an intringic scale, 2y == 0.10 L. The good agreement hetween the obser-
_vations and this calculated variation shows that the mechanism of natural convection
iy’ much the same in the atmosphere and in: the laboratory (Towwnsexp, 1961).

Experimentally, the Malkus predictions for heat convection are qualitatively in
agreement with measurements of mean temperature in the laboratory and in the
atmosphere, which is not true of the similarity predictions. For Poiseuille flow, the
two sets of predictions are qualitatively similar and they are both confirmed by measure-
mente of mean velocity. A distinctive feature of the Mualkus theory is the numerical
predictions of velocity and temperature distributions, not made by similarity theories,
and these are in very fair agreement with experiment when it is rememhered that there
are no disposable constants in the theory. In the restricted class of turbulent flow
between parallel planes, there seems no doubt that the Malkus theory offers a better
and more consistent description than the more conventional theories, and if iz an
imprespive achievement to have predicted a failure of the similarify theory in natural
convection. On the other hand, the similarity theories offer a simple and apparently
plausible explanation of the universal validity of the relation,
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1/2 .
U 47
dz kz '
in flows close to a solid boundary with a wide range of surface conditions (roughness,
flow injection, etc.) and this is not easily shown from the basic assumptions of the
Malkus theory. . '

5. Relation to statistical concepts of turbulent motion

So far the theory has been treated mostly as a machine for the prediction of distri-
butions of mean veloeity and temperature, without any serious attempt to relate the
actual turbulent motion to the part of the motion considered by the theory. This cannot
be done exactly, not because of a lack of experimental knowledge of the flows but because
the theory does not specify the fransporting motions with sufficient precision. Each
component of the « transport» specirum could he produced from two-dimensional
motions periodic in the 20y plane and with the proper number of nodes in the vertical
direction, and any combination of these is possible. Without knowing the distribution
of these equivalent motions, not even the simplest parameters of the turbulent motion
ean be calculated without additional assumptions, and any comparison must be between
qualitative features of the theoretical and observed motion.

In wall flows, many measurements, particularly those of GranT (1958) and of
Faver, Gavierio & Dumas (1957), show that correlation between velocities at different
points may be appreciable with separations comparable with the width of the flow,
even when one or both points are very close to the wall where the intense dissipation
seems to demand very small sizes of eddy. The only exceptions are for the vertical
component of velocity, particularly. with separation in the Oy direction. Connection
between motions in widely separated parts of the flow appears to be more eagily explained
by component motions each affecting all parts of the flow at once than by the model
used in mixing-length and similarity theory which assumes eddy-sizes moderately small
compared with the flow-width. On the other hand, the smaller extent of correlations
of the vertical component (which is most closely assomated with turbulent transport)
suggests that most of the horizontal motion near the wall is a swirling motion caused
by eddies whose contribution to transport is appreciable only much further from the
wall, and that the remammg transporting motion could be descrlbed by the similarily
theory If this view is correct, most of the objections to using the basic result of the
similarity theory for shear flow are met and one can use it successfully to deseribe many
kinds of wall turbulénce with"negligible buoyance forces. -

In convective flows, measurements of fluctnations are scarce though visual obser.
vations indicate penetrative movements with a range not found in shear flow, and this
is clearer evidence of tranmsporting movements linking separated parts of the flow than
is available in wall flow. Thege flows are peculiar in that the original laminar instabilities
are exiremely persistent and tend to break up, as the Rayleigh number increases, not
Into ordinary tarbulent motion but into cellular disturbances of higher order. This
tendency probably is connected with the simpler mechanics of energy-generation from

the heat flow and there is no doubt that the llttle We know about the fluctuations is not
consistent with ideas of similarity.
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The non-inear transfer of energy between components of the turbulent motion
appears in a rather unusual form in the Malkus theory, but this is a consequence of
using a spectral decomposition with respect to the vertical direction, equivalent in some
ways to an average over the flow. In Poiseuille flow, this means that the spectrum of
transporting motions covers much the same range of wave-numbers with much the same
intensity as the spectrum of the nearly isotropic, dissipating eddies which possibly are
in a condition of local similarity. In fact, it is wellknown that most of the production
of turbulent energy and most of the dissipation takes place near the edge of the viscous
layer where the scale of motion is smaller than anywhere else in the flow and where
the small Reynolds number of flow prevents a wide spread of eddy sizes. Further from
the wall, a proper dissipation chain of locally isotropic eddies does exist but the smallest
eddies of this chain are larger than the eddies at the edge of the viscous layer. With this
in mind, we have the transporting modecs deriving energy from the mean flow distribu-
tion ag determined by their own amplitudes but not infer-acting in any other way
(compare the treatment by STuarT (1960) of the stability of finite disturbances of a
laminar flow), and losing energy to a background of locally isotropic turbulence. For
mechanical consistency, it would scem that this loss must be equivalent to an eddy
viscosity of value dependent on the order of the mode concerned.

6. Developing turbulence

Turbulent flows that are not stationary in time set a difficalt problem for any
theory and progress has only been possible it the flow is capable of self-preserving
development. In all such flows, sell-preserving development 13 a stable, asymptotie state
and initial deviations from it diminish during development as a moving equilibriom is
set up. Although this equilibrium may resembie the complete equilibrium of stationary

flows, the basic assumptions of the Malkus theory need considerable modification if they
are to apply to self-preserving flow. ' '

- To begin with, nearly all self-preserving flows have at least one point of inflexion
in their velocity profiles and the presence of a point of inflexion has very littie effect
on the properties of a flow. For example, a boundary-layer in zero pressure gradient has
no point of inflexion but it can be deseribed using the same flow constant (defined by
- equation 6.1) as boundary-layers in adverse pressure gradients which have one and some-
times two points of inflexion. This difficulty conld be overcome by allowing a small
number of these points, say not more than two, and it is perhaps not serious, It is

interesting that one stationary flow must have a point of inflexion in its profile, plane
Jonette flow. :

Second, the requirement of maximum energy dissipation would imply infinite rate
of spread of a developing flow without some additional constraint. There ig some
evidence that a constraint of this kind does exist in wakes and that it affects the rate
of development of instabilities of the current velocity profile. GranT (1958) observed in
a wake that scctions of Kirman street developed with a spacing appropriate to the
current flow width and, after entraining some ambient fluid, they slowed down and
disappeared, to be replaced later by another set of Kirman eddies with wider spacing.
This observation emphasies a further difficulty of basing a theory of developing flow
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on stability theory, that self-preserving, fime-dependent disturbances are not compatible
with the equations of motion and that continuous growth and decay of eddy structures
is an essential cham(temstm of these flows.

The remaining two assumptions, representation of the transport by a finite series
and murginal stability of the motion described by the highest {erm of this series, are
hardly definitive in free turbulent flows which are described ‘quite accurately for all
Reynolds numbers by the first few terms of a series of the proper orthogonal functions.
So it appears that developing fiows are not described by the theory in its present form
and that major modifieations would be necessary before this conld be done. In spite of
this, the notion that neutral stability of a disturbance of the laminar fiow has a bearing
on the turbulent flow receives some support from the interesting coincidence between

1 .
the tnrbulent Reynolds number — | (U, — U) dz (where v, is the effective eddy viscosity
Vr

for the mean flow) and the corresponding Reynolds number for laminar instability of .
a wake (Townsenn, 1956, p. 166), and from the successful use of the condition,

1 &
— f (U;—U)de =R, the flow constant - (8.1)
Vg 0

to predict development of boundary-layers and diffuser flow (Towwxsenp, 1861a).

7. Conclusions

Acceptance of the concepts and assumptions of the Malkus theory is very much
a matter of taste until their dyuuwmical basis can be expressed more clearly but, within
the limited class of flows so far analysed, ity power of prediction has been very good. -
There are two reasons why some doubt must be felt about the merits of the theory as
a general theory for all turbulent flows; the apparent difficulty in establishing the
universal logarithmic distribution in wall flow and the inapplicability to developing
flows. This suggests (to me) that the representation of the transport by components
covering the whole width of the flow is a good approximation in convective turbulence,
a rough one in wall turbulence and is not applicable to free turbulence.

Dr. Matkus has been kind enough to send me some details of the present state of

his theory and they have been very useful, but he bears no direct responsibility for the
opinions of the author.
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ON THE MALKUS THEORY OF TURBULENCE
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SOMMAIRE

Le but de la théorie de Malkus est d’éviter des calculs explicites non linéaires en faisant
appel 4 un principe d’optimisation qui caractérise la turbulence statistiquement station-
paire. Le principe de la dissipation maximum est présenté comme celfui qui peut étre correct,
et on montre qu'il est équivalent au transport maximum de chaleur pour la turbulence
thermique. Ceite discussion souligne le procédé utilisé par Malkus pour trouver P'état de
transport maximum de chaleur dans un fluide turbulent transporteur thermiquement.

Le point particulier discuté est celui de la convection naturelle entre deux plagues
paralléles, rigides, lisses, parfaitement conductrices. .

Les champs fluctuants de vitesse et de température sont décomposés suivant le jeu
de mode normal des équations linéarisées. Dans les termes de cette représentation, on
discute Paspect énergétique de la turbulence thermique, qualitativement, les effets de la
non-linéarité sont dégagés. C .

Avec cefte discussion, comme arriére plan, les hypothéses de Malkus sont introduites.
Ce sont :

1) le gradient de température moyenne n’est nulle part positif,

2) une gamme finie de nombres d’ondes est efficace dans le transport de chaleur, et

3) le nombre d’ondes vertical le plus élevé contribuant au transport de chaleur est
“marginalement stable sur le profil de température moyenne. .

Des arguments physiques sont présentés pour justifier chacune de ces hypothéses, mais

_la meilleure justification réside dans la présentation des résultats. ‘

La théorie de Malkus prédétermine la forme du gradient de température observé juste
4 Tintérieur de la couche limite, ainsi que la forme correcte de la loi de transpori de
température. : - B :

De nombreuses questions concernant la théorie peuvent étre soulevées, et seulement
quelques-unes d’entre elles sont énumérées dans la conclugion de cet exposé.

 Néanmoins, Pimpression finale est que la théorie a beaucoup d’arguments favorables,
et qu'elle souléve nombre de guestions intéressantes concernant les écoulements turbulents,

SUMMARY

The aim of the Malkus theory is to avoid explicit nonlinear calculations by appesl to
an optimization principle which characterizes statistically steady turbulence. The principle
of maximam dissipation is offered as the possibly correct one and is shown to be equivalent
to maximum heat transport for thermal turbulence. The present discussion outlines Malkus’
procedure for finding the state of maximum heat trapsport in a thermally convecting,

turbulent fluid.

%
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The particular situation discussed is that of natural convection between two parallel,

rigid, slippery, perfecily conducting plates. The fluctuating velocity and temperature fields
are decomposed into the set of normal modes of the linearized equations, In terms of this

representation the energetics of thermal turbulence is discussed quahtatwely and the effects
of nonlinearity are pointed out.

‘With this discussion as background, Malkus’ assumptions are introduced. These are :

1) The mean temperature gradient is nowhere positive,

2) A finife range of wavenumbers is effective in transporting heat, and

3) The highest vertical wavenumber contributing to the heat transport is mar-

ginally stable on the mean temperature profile,

Physical arguments are offered to justify each of these assumptions, but the best justification
is in the presentation of results. The Malkus theory predicts the observed form of the
temperature gradient just inside the boundary layer and the correct form of the heat
fransport law,

Numerous questions concerning the theory may be raised and a few are listed in the
concluding section of this paper. Nevertheless, the final impression is that the theory has
much to recommend it and that it raises a number of interesting questions about turbulent
flows. - :

1. Introduction

Consider a field of steady turbulence which has been decomposed into a set
convenient normal modes. For each mode the ensemble mean amplitude will have a
constant value resulting from a balance of three processes : '

1} input;
2) molecular (and radlatwe) dlssxpatmn,
3) nonlinear coupling with other modes. ’

Energy input into a mode may result directly from external driving forces or
from nonlinear coupling with a mean ficld of velocity or temperature. In any case
the input process is a complicating factor which may depend on the special configu-
ration of the problem at hand. For this reason much effort has gone into the study
of igotropic turbulence, where the input problem iy unimportant, However, even the
avoidance of the input problem has mnot led to ‘completely successful solution of any
problem becaunse of the well known closure d1ff10u1ty from process 3.

- The Malkus theory of ‘turbulence therefore takes an entirely different Vlewpomt
from the prevalent one of modern turbulence theory. It stresses the importance of input
processes, and especially the coupling between mean fields and fluctuating modes of
turbulence. Moreover, in its assumptions, it implies that the nonlinear couplings among
fluctnating modes play a secondary role in the dynamics of turbulence. And finally,
and mest important, it seeks fo avoid entirely any explicit calculation involving the
nonlinear couplings.

Malkus’ basi¢ assumption is that statutma.lly steady turbulence is characterized by
the optimization of some integral property of the field of flow. This kind of assumption
is not new to statistical mechanics, and even some early studies of turbulence have a
similar point of departure. However, no such previous study seems to have achieved
verifiable predictions, and even in theoretical explorations of the optimization principle,
previous investigations have not been nearly as extensive as that of Malkus.
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The theory has been attempted with two separate optimization principles. ‘First,
Malkus made the assumption that the total viscous digsipation in steady turbulence
is a maximum subject to certain constraints which we shall discnss later. The other
prineiple tried was the « relative stability eriterion » of MaLxUs and Veronis (1958) which
was employed only in the context of thermal turbulence. MAaLRUS (1961a) has recently
attempted to show that the relative stability criterion implies maximum viscous dissipa-
tion, but this aspect of the theory is too detailed to be considered here. In any case, the
difference between results of investigations based on these two different postulates s
pever vast (Marxus, 1960).

The principle of maximum dissipation may be expressed in two equivalent ways
which deserve mention. For thermal turbulence, with fixed boundary temperatures, the
flow which maximizes dissipation will also transport maximum heat (MALKUS, 1954¢). ¥n
his original treatment of the thermal turbulence problem, Matrus ( 1954a) employed the
maximum-heat-transport form of the principle. A second interesting form of the prin-
ciple states that it is equivalent to maximum entropy generation for fixed boundary
temperatures, and to minimum entropy generation for fixed heat flux (MaLxus, 1961a;
Veronis, 1961a). The latter statement resembles the principle of minimum entropy
production derived by PRIGOGINE (1947}, but Markvs (1961¢) has pointed out some
distinctions. . ,

In the present discussion no more will be said about the question of the validity
of the maximnm dissipation principle. It is our feeling that the prineiple is far from
being rigorously established theoretically; nor does it seem likely that direct experimental
verification will soon be possible. The criterion for the validity of Malkus' basic pos-
tulate and of his entire theory must thercfore be hased on the accuracy of predicted
results. It is with the derivation of such results from the maximum dissipation prin-
ciple that the present paper is chiefly concerned. ‘

We shall-discuss in section 4 the constraints imposed by Malkus in applying the
maximum dissipation principle to turbulence arising from thérmal convection between
parallel plates. In particular, we shall follow the method of Marxus’ (1954a) original
treatment of the problem, though the approach used in later studies (e. g. Maikus, 1960)
is somewhat different. The assumptions and approximations introduced in both treat-
ments are, however, the same. The problem of thermal turbulence is preferred for this
exposition since the calculations are geperally simpler thanm the analogous ones for
ghear flow turbulence, as a reading of Manxus’ (1956} paper on shear flow turbulence
will verify. For readers who may not be familiar with the problem of thermal turbulence,
we present in sections 2 and 2 a qualiftative summary of the physieal background
for the discussion to follow, '

2. Preliminaries on thermal turbulence

To provide on introduction to our discussion of the Malkus theory we shall outline
some of the physics of thermal turbulence in this section. The material given in this and
the following section iz intended to stress certain gualitative features of the problem
which seem particularly germaine to an understanding of Malkus’ ideas. We shall
consider a flnid bounded hy two horizontal planes at 2 =0 and ¢. The bounding planes
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are rigid conductors maintained at constant temperatures. The separation between the
two boundaries will be taken to be so small that the density of fluid may be considered
congtant except when fluctuations give rise to buoyaney effects. This last approximation
is known as the BoussiNesg (1903} approximation in the literature on thermal convection
(see also Semeer and Veeonis, 1960; Mraarzan, 1960).

In specifying the problem we shall need two further assumptions. The first is that
time averages, ensemble averages, and averages over horizontal planes are equivalent.
Thusg the horizontal average of any quantity has no time dependence. For example,
consider the total temperature T. We may write this as '

T(@y20)=T0+0@yzt M
where 0 is the fluctuating component of the temperature, and 6 = 0. Averages indicated
by a bar will be computed as horizontal averages.

Next we must specify the nature of the boundaries. The experlmental setup we
have described demands that

w—ﬁ—-Oatz:od ' @)
where w is the vertical component of the velocity. We shall further assume that the

boundaries are stress-free. This assumptlon together with the continuity equation (for
an incompressible fluid) implies

97 —0ate=o,d (3)

Condition (3) is known as the free-boundary condition in the literature of thermal
convection. It is probably not as realistic a condition as the vanishing of horizontal
velocity on the boundary, but it greatly simplifies the calculations. (The condition of
vanishing horizontal motion on the boundary is known as the rigid boundary condition.)

The first important theoretical result about thermal convection was found by
Ravririer (1916) who showed that the experimental situation we have described is unsta-
ble to small perturbations whenever (see also PeLiew and SoUuTHWELL, 1940)

27 _
gad® AT — w* == 657 (free boundaries)
=————2Re=q 4 | (4)
ok 1708 (rigid boundaries)

The Rayleigh number, R, is a measure of the ratio of buoyancy to viscous forces (e. g.
. BrizGeL, 1960). Here « is the thermal expansion coefficient, AT is the. temperature
excess of the lower boundary over the upper, k is the thermometric conductivity, and v
is the kinematic vigeosity. Experimentally, one of the simplest properties of a convecting
fiuid to determine is the total heat transport, #€, through the layer. It has been found
that 3€ is linear in AT for R < R,, but for R > R,, #€ rises 'with a higher power AT
(JACOB, 1949 ; Markys, 1954b). For very large R, the heat transport follows the law

- 4 AT ( R )”3

—H=— —— )
PGy d Ro .

where Ry is ~ 2000 (for rigid boundaries). This asymptotic law implies that H is inde-

pendent of d and hence suggests the existence of a boundary layer. It is, in fact, possible

to derive the form of equation (5) from boundary layer theory.
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3. The dynamics of thermal turbulence

The equahons governing the phvsxcal circumstances described in section 2 are the
Navier-Stokes equations (including gravitational acceleration), the continuity equation,
and the heat equation. By taking horizontal averages of thege equations we may learn
something of the mean properties of the convecting fluid. In particular we obtain from
the heat equatmn that the heat transfer is constant throughout the fiuid and is given by

H KB+ 00 . (8)
where _ .
dT '
B = - F o _ | (7_ )

The term 9 represents the heat flux due to convective motion.

From equation (6) we may infer the existence of a thermal boundary layer in a
fluid with active convection. Since aceording to equation (3), w0 must vanish on the
boundary, § will have its largest value there. In the midregions, w6 will be large, for
large R, and § mugt be small. The effect of heat convection is therefore to distort the
linear temperature profile of pure conduction to the sigmoidal profile shown in fig. 1b.

z ! z
d -y

-]

AT T
(@ o )
' Figumre 1 °

a) Temperature profile in the conductive state (no motion).
b) A representative mean-temperature profile in the turbulent state

If we subtract the horizonially-averaged equations from the original ones we
obtain a set of equations for the fluctuating quantities m and 9. (There is no mean
veloeity in this simple example of thermal turbulence.) The equations for the fluctuating
quantities are (e. g. see Markus and VERONIS, 1958).

—%tu——vv"’umgaﬂ—l— v»p_—u vu (8)
20 |

| %T‘—“uv=a+6w=—u-ve+u-vﬁ | (9)

Vu=10 . - (10)

where p is the deviation of the pressure from itz horizontally-averaged value.

=
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On the basis of these eguations we shall discuss qualitatively the energetics of
thermal turbulence. In this we shall follow clogely a recent approach suggested by
Ledoux, ScEwarzscHILD and Spmggl (1961). We begin by introducing a convenient et

of functions in which to represent the fluctuating quantities. These functions are the
normal modes of the following system of equations :

ou i
———vVu-—-gab 4+ —Vp—0 {11)
ot ‘ 4
—:Z%u—xvzﬂ-}—@w::o (12)
Va=10 {13)

Equations (11), (12), and (13) are just the equations of the proplem without the
fluctuation-interactions. We presume for the moment that 8 (2) is a known funetion; but
it actually is given by equation (6) and must be determined together with final solution
of the problem. Equation {13) is therefore still nonlinear, otherwise equations (11) -(13),
would just be the equations for an infinitesimal motion,

Equations (11)-(13) admit separable solutions. The time depmdénce' of such
solutions will be exponential and the horizontal dependence may be taken to bhe
harmonic. The separable solutions then have the form '

|nay>=etta=0, (2) (14)

The eigenfunction Q,., represents a four-vector with three velocity components and one
temperature component. The wave-vector a is a horizontal wavevector s0 that

arx=lkya -+ k1. _ (15)
The quantity » is the vertical « quantum number » which appears in the z-equation
for Q,,,. The quantity » takes only integral values since the system is of finite vertical
extent. The equation for Q... is readily derived from equations {11) - (13) and will not be
needed here (but see Appendix B).

Equations (11) - (18) describe the time behavior of the fluctuating fields under the
influence of buoyant input of energy and the dissipative processes of conduction and
viscosity. In the absence of the fluctuation - interactions a given mode would continue
to vary exponentially in time. The growth rate, w, must be real for a convectively
unstable fluid, as we shall prove in Appendix A. For each pair (na) there are two

allowed values of ¥ which we shall call n, and n_. These two values of 7 correspond
to physically distinct kinds of modes.

In figure 2 we show the general dependence of v, on a and n for fixed R. Where L/
is positive, the buoyant.input of energy exceeds the dissipation. For large la] or n the

~ dissipation is too large and 7+ is negative. On the other hand 7 is negative definite
for all a and n. -

The difference between the n, -modes and the n_. -modes is due to what we shall
call the phase relations of the modes. An in-phase mode has amplitudes such that upward
velocity always occurs with positive temperature fluctnation, For an out-of-phase mode
upward velocity is always paired with negative temperature fluctuation. Hence
buoyancy forces always act to decelerate an out-of-phase mode. Moreover, out-of-phase
modes, when they are excited, convect heat downward, against the prevailing temperature

gradient. In this sense, the 0+ -nodes are in phase and the v.. -modes are out of phase.
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© FigunRg 2
Showing v, as a function of n and a=|a/|.

It is convenient to introduce the notation

#’x - I nan, > ) .
‘We can then think of the eigenfunction | na > &s a two component function,
| q5+) |
. na> = ( . (17)
e U

This notation is intended to make plausible the supposition, used in the remainder of
this sectiom, that the funetions !na > form a complete set into which we may expand
the turbulent velocity-temperature field.

The field in question will be in a statistically steady state. When we speak of the
amplitude reached by given mode, we shall always have in mind the spectral amplitude
which has been ensemble-averaged.

Let us the consider the energetics of thermal turbulence in terms of the in and
out-of-phase modes. As implied in the introduction we must balance the buoyant input
against molecular and nonlinear dampings. The buoyant input and molecular dissipation
rates are summarized by the n's. Thus modes with n; > 0 are excited by buoyancy forces
and drain potential energy from the system. Through nonlinear interaction, according
to the bilinear terms in eguation (8) and (9), n_-modes and other v.-modes are then
exciled. The v _-modes are damped because they are opposed by buoyancy forces and
-return potential energy to the mean field. Those 7 -modes with 7, < 0 are also damped,
but they are damped by molecular processes. The situation is summed up in fig, 3
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where the curved lines indicate nonlinear interactions described by the bilinear terms
in the full equations. Borrowing from the terminology of stability theory we refer
in figure 3 to 4 -modes with 1. > 0 as unstable and with 1+ < 0 as stable.

STABLE
n4 MODES
NONLINEAR
CASCADING
MEAN BUOYANT | UNSTABLE
FIELD INPUT | p, MODES
NONLINEAR

PHASE MIXING

n- MODES

Figure 3
The gross emergeties of convective turbulence. Arrows indicate net flows.

On the basis of this qualitative discussion of the energy balance we can sketch the
power spectrum of the turbulent velocity-temperature field. In doing this we may refer
to figure 2, showing the dependence of v, on n. We notice that there is a value n. such
that # < 0 for all » 22 n.. Hence only n;-modes with » < n. are directly excited by
buoyancy forces and these will have largest amplitude, However, n_-modes will also
have nonzero amplitude for n < 7. because of nonlinear interactions. For 22 Tosy s
and v_-modes will have rapidly diminishing amplitudes for increasing n, but there will
still be finite excitation. Since temperature and velocity fluctuations at high wavenumber
are excited by separate interactions (i.e. by u - Vu and @ * V8) they can oceur with
the same or the opposite sign almost equally often. In other words, little phase infor-
mation will be transferred from mode to mode. This qualitative remark is strengthened
by the localness of the nonlinear transfer; phase information is not likely to be trans.
ferred over any great distance in wave number space. It seems likely therefore that n.-
and m_-modes will have nearly equal amplitides for # > n.. In figure 4 we illustrate
these remarks with a plot of the power spectra as a function of n. ‘

Similar remarks may be made about the heat-transfer spectrum of steady state
thermal turbulenee. There is, however, the difference that the +..-modes conveet heat
in the downward direction and their presence therefore causes diminution in the convee-
tive heat transfer. In this way, the nonlinear interactions diminish comvective heat
transfer by exciting n.-modes. Hence, in order to maximize heat transfer we would
have fo minimize the strength of the nonlinear interactions.
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The power spectrum of the turbulent velocity-temperature field.

The

eurves show distribution with respect to n for fixed R and a

The spectral densities in n,-modes an n.-modes are plotted separately.

. HEAT TRANSPCRT SPECTRUM

Fioure 5

The heat transport spectrum plotted against n for fixed R and a.

The curves show energy transported by u,-and n.-modes and their combined transport,

Figure 5 shows a plot of the convective heat transfer in each mode as a function of %.
The eurve of net
two kinds of modes. Bince for n >> n. the amplitndes of 7.~ and %_-modes tend to be
nearly equal, the net heat transfer drops rapidly toward zero for n > n.. This last
property of the heat transfer is important for the ideas of Maixvus to which we now

heat transfer shown is the linear combination of the transfers in the

k]
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4. The Malkus theory

In this section we shall apply the Markus theory to the thermal turbulence problem
described in section 2, following Malkus’ (1954b) original approach to the problem.
Our task then is to find that statistically steady state of turbulent motion which
maximizes the heat flux, H, where H is given by ' '

H=«i+ wh ‘ (6)

Some motivation for proceeding in this way way given in seetion I, but basically we have
to take this approach as postulational.

Since the houndary temperatures are fixed, we have the additional condition

A ‘d .
f fds=—AT. (18}
4]
Another useful relation is obtained by averaging equation (6} over 2 :
kAT
H=— A + < wh > : 19

Here the symbol < >> denotes an average over all space as in
' 1 e __
<we>:-—f wh dz . (20)
d . Jao

Equation (19) shows that maximum H is eguivalent to maximum < wb >>, since the
boundary conditions fix AT. Markus is guided by this fact in chooking constraints which
ensure that the maximum sought for H is finite.

To understand Markus’ choice of constraints we note that <« w6 > will be finite
if w0 has an upper bound., Very likely, nonlinear interactions limit the amplitndes of
w and 0 and set an upper bound on wb, but we are not able to calculate such limiting
amplitades, On the other axd, for finite H, w8 will have an upper bound if § has a lower
hound. Markvs therefore makes

Assumption 1 : E=0,

Originally, MaLgvus justified this assumption on the thermodynamic grounds that
heat should not flow against the prevailing temperature gradient. This argument is guite
plausible but there is a diffienlty in it. Jf we allow that any real finid is slightly
compressible we find that in the correct BoussiNesqg form of the equations of motion
(TEFFREYS, 1930; see also SeikceL and VEroxnis, 1960) § should be

4T q
B=— + (21)
dz Cp .
- where is the adiabatic temperature gradient, Hence, § is not strictly a temperaturc
Cp :

gradient in a veal fluid.

A later justification offered by Maixus for Assumption 1 was that in a region where
6 < 0 a fluctuating mode of turbulemce would locally lose energy to the mean field.
Hence, Marxus would argue, the criterion for imviscid instability, 8 >0, should be
maintained thronghout the fluid. It is, in fact, possible to give an explicit local eriterion



191
for the loss of energy of a turbulent mode to the mean field. A mode of (nondimensional}
horizontal wavenumber ¢ (= |a|) will lose energy to the mean field in a region where

o at AT : : 3
AT . (22)
R 4
"Hence, it no mode is to lose energy to the mean field in any region of the flyid, the lower

bound on § should be

<

ad, where o is the largest horizontal wavenumber contri-

buting to heat transport. In fact, the existence of a largest horizontal wavenumber
is implied by the Markus theory (see Appendix. B). It is therefore not clear why zero
should be the lower bound on B. : .

The next step in MaLkus’ procedure of maximizing H is to expand w and 6-in
Fourier sine series in #. Sine series are chosen because of lhe bhoundary conditions (2)
and (3). It is then possible to express 19 in terms of these expansions. If § is symmetric

1 L
about the plane 2 :—‘_)—d, ordinary manipulations lead to the expression

o

. _ nwz
| wBZ‘Z p Sim? . (23)

n=—1 . ) _
The quantities «, define the heat transport spectrum in the representation by sine
functions. The maximum value of H, or < wf >, is to be sought among the great
variety of possible speetra. On applying the definition (20) we find that

R

. 4 .
<«w6->=;2qﬂ. . | (24)

=1

For < i 3> to be finite the series of equation (21) must converge, hence the o, must
diminish rapidly for large n.

In section 3 we suggested that the heat transport spectrum falls quite rapidly
for n-> n. (see figure 5). In fact, if it were not for the nonlinear interactions, the spectral
amplitudes would be zero for n 32 n.. We also argued that nonlinear interactions tend
to diminish heat transport by exciting the out-of-phase modes. We concluded that to
maximize heat transport we should 'minihﬁze the strength of nonlinear interactions;
this was even proven by Margus and Veroxis (1958) for small Rayleigh number, A
congequence of minimizing the strength of the non linear interaction would then be
the minimization of the amplitudes in the tail of the heat transport spectrum.

The remarks of the preceding paragraph are appropriate only when the represen-
tation in terms of the modes of section 3 is made. They are offered here fo make
plansible MaLrUs

Assumption 2 : There exists an n, such that a, =0 for all # > #ne. -

' In any case, Assumption 2 ensures the convergence of series (24) and kence the existence
of a finite maximum for H. However, it nced not imply cutoffs in the veloeity and

temperature spectra; Kormocororr's laws should still be satisfied at large wave-
numbers. - ‘ '



192

With Assumptions 1 and 2 as constraints, H may be maximized by \Irarying the a,.
.In his original treatment, MarrUs (1954a) introduced Assumption 1 by assuming that 3

actually goes to zero somewhere in the fluid. The heat transport spectrum then turned
out to be '

AT ¢ n
| Gﬁ:——-‘iKT(l—nﬂ_l_t), o ﬂg__ﬂu (25)
while the heat transport is given by ‘ o
AT .
B=k———(no+1). | | (26)

These results are not meaningful without the specification of ng, but a comparison
with experiment is possible at this stage through the corresponding form of B

AT 1 sin¥me+ 1) 7:
= - : ' , {27) -
148
d fo + 1 sin 2 7

Towxsuny (1959) has measured the temperature distribution in a eonvecting flnid,
just outside of what he ealls the conducting layer. Equation (27) enables us to predict

o
the distribution in that layer. If we assume ny>1 and take F«l’ we find that, away

from the bounldaries,

1 d

This dependence on 2’ is especially interesting since PriEsriey (1954) has obtained
a ~1/* dependence by a stmilarity argument. Townseno’s data decide in favor of the
z~llaw of the MaLrRus theory, It is interesting that this particular success of the
theory seems to depend very semsitively on Assumption 2. '

In order to fix H we must prescribe n,. The same reasons which led to Assumption 2
provide a basis for selecting ny. The existence of modes for n = ne wag due, we saw,
_ to the nonlinear interaction. In maximizing heat transport we were led to minimize the
effect of these higher modes on heat transport. If this reason for truncating the heat
trangport spectrum is sound, we should naturally adopt

Assui_nption 3: ' Ny =+ L = n«,

‘Or, to put it in words, the {ny 4 1)** mode is to be the mode closest to neutral stability
on the mean temperature field. ‘

-Unfortunately, there is an inconsistency implied in Assumption 3 which can best
be understood by considering equations (11) - (13). These may be reduced to a single
equation for w (see Appendix A). The condition for neutral stability is obtained by

setting -% = 0 in this equation. We then have

Vew ZELB Viw (29)
Ky
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where
. - D2 ‘
= s 30
vi " + ey (30)
Equation (29) in non dimensional form is ‘
6 :
g % - (81
Viw=R |——| Viw | (31)
d
where d is taken as the unit of length. Equation (31) has solutions of the form
w=e2*W_, (2) {32)

where a is the horizontal wavevector, as before. The function W, satisfles the equation

ti.‘.’ 3 . s .
——— {12 —_—— — | 42 .
: S ] S
in which Ry. ig the eigenvalue of R. The boundary conditions are discussed in section 2.

Congider now a particplar experimental situation with a specified value of the
Rayleigh number. The smallest value of # for which R, =2 R for all a is called n.. By
Assumption 3, n. is identified with no 4 1. The mconsmtency arisey becauses MaLEUS
makes his expomswns in terms of sin nxz, which in general is different from W_, both
in #-dependence and in being independent of a. Assumption 3, however, implies that the
n’s are equivalent, in some sense, for both functions, Moreover, the physical arguments
we have put forward to justify Assumptions 2 and 3 require for their validity that
expansions be made in terms W,., or related functions.

It seems possible to restate the theory in terms of appropriate expansions (see
Appendix B). In this way, Malkus’ approach may be considered an approximation to
the more carefuily posed problem. To clamfy this suggestmn let us note that the
WEKEBJ dpprommatmn for W,. gwes

. . - .

nw f hdz |
0

a

- hdz
W0

W, =N, h~V2 (h? 4 1)~ sin

where N, is a normalization constant and

= Rg 1/3 ‘1/z o : Lo | ~
ﬂ."* — .

d
Expression (34) will not be accurate unless
: AT o ‘
> — 36}
B TR (

which is valid in the boundary regions., Also, § is nearly constant near the boundaries
and hence, sin nzz should be a good approximation to a W, there. Since Malkus’
calculation depends almost entirely on properties of the boundary regiom, no effect of
the inconsistency of Assumption 3 should appear in his results. However, any use of his
formulation to ¢btain information about the midregion iz likely to Le less accurate.
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Te obtain ny Malkus used a variational principle. The main contribution to the
integral comes from the boundary region and hig use of sine functions is adequate
for the reasoms just given. His calculation yields (MaLkus, 1961B)

BR=Ro(m+1)* . (37)

where

h 1533, free boundaries
Ro = o s x . (38)
25383, rigid boundaries
‘We then obtain
. AT / R\ ‘ _
H—x——— (-—--—) : (39)
d Ry

a8 would be expected. A discussion of the numerical agreement of Ry and the constants
in equation (28) is given by Townsenp (1959); the glope predicted by the theory is
reasonably accurate, but the additive constant in equation (28) disagrees by more
than the experimental error would allow.

5. Concluding remarks

One objection which may be raised to the Malkus theory is that the optimum state
which he has found may not correspond to any solution of the equations of motion, In
recent work, Markus (1960) has attempted to add constraints which ensure that the
optimum state be allowed by the equations of motion. In pa.rtmular, he requires that
the velocity and tfemperature field satlsfy the so-called power integrals, or. second
moments, of the eqnations, An even more recent study by L. N. Howarp (unpublished)
seems to indicate that the use of the power integrals as constraints implies a cutoff in
the heat transport spectrum. This is not surprising since the power integrals do not
contain any iniluence of thewﬂuctuation-interactions. One guapeete that the introduction
of farther constraints based on higher moments of the equations will permit the heat
transport spectrum to extend weakly to iufinity. Though Malkus’ original optimum
state is probably not allowed by the egquations, it is perhaps a limit of a sequence of
allowed states. The current work should clarify this possibility.

~ A gecond difficulty may also arise in cases where the fluctuation-interactions are
essential to the dynamics of the motion. For example, in the limit of very small Prandt}
. number the equations of thermal turbulence reduce . almost exactly to the equations
of homogeneous turbulence, except for the presence of an input term (8rieceL, 1962), In
particular if the Prandil number s satigfies

. | sB « R (40)
the convective heat transport will be megligible and the mean temperature field will
not be distorted by the motion (Lkvoux, ScHwarzscHILD, and Spigcer, 1961). The
difficulty is that there is no indication in the Malkus theory of the possible change
of the character of the flow as the Prandtl number decreases and the relative importance
of nonlinearity increases. Of course, there may be no real discrepancy here, but certainly
< la[* > derived with the Malkus theory differs markedly in Rayleigh number depen-
dence from the value obtained using the idea of eddy viscosity. However, the calculation
of < ]l.t|2 > in both approaches has been appronmate and the cbjection raised may be
premature. More careful study of this lumtmg case is called for.
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There is also a question of generalizability of the theory to complicated gituations
occurring in nature. One perplexing type of configuration met in astrophysics and
geophysics entaily a § which ix strongly negative in the absence of motion. Convection
can diminish the region of negative p, but not remove it entirely. How, in such mstances,
are we to apply Assumption 1 of the Malkus theory ?

We should also call attention to MaLkvus’ {1956) study of shear flow. using the
ideas presented here. The shear flow study is much more difficult than that of thermal
turbulence especially because the determination of np brings the Orr-Sommerfeld equa-
tion into the problem. Nevertheless, Malkus has succeeded in predicting the correct
velocity-defect law and a reasonably accurate value of the von Karman constant. The
theory is limited, however, in shear flow as well as in thermal turbulence in .the

qguantifies which may be predicted. Information on veloeity spectm, for exa,mple, does
not yet seem obtainable from the Malkus theory. :

In spite of these questions which remain, we should like fo conclude this disfcussion:
with the judgment that the Malkus theory has provided a powerful new approach to the
problem of turbulence, It is rich in physical insight and may even shed light on the
problems of. irreversible processes in general. Certainly, it calls for intensive further
study, especially along experimental lines. Experiments in thermal turbulence are par-
ticularly needed; the possibility of checking Malkus’ assumptions with accurate spectral
data promiges to be very interesting.

T shall not attempt to lixt all of the people with whom I have enjoyed valuable

discussions of the problems touched on in this report, but I should like to acknowledge
my indebtedness to these discusgions.
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APPENDIX A

' We wish to prove here that Im {n} = 0 when Re {n} == 0, where v is the growth-rate
appearing first in equation (14). To do.this simply let us reduce equations (11), (12) and
(13} to a mingle equation for w. . :

Taking ¥ x Vx of equation (11) we obtain
. .
(ait—vvz)u.~gayzle+galv%=0 (Al)

where we have used equation (13). If we then take -—a-—t——x V“) of thez-component

of equation (Al) and add gaV3 of equation (13) to the resultwe find

' a . ] a . z l - -
("'aT“"V') (ﬁ““"”) Vi =gap Vi w. (42)

Equation (A2) admits separable solutions of the form

w (@, y, 2; 1) = e+ ¥ Woay . (A3)

‘The equation for Wy, without subseripts, is .

.[n.—x(;; —az\)] [nhv ( ‘;:2 '——a2)] '(f—zz—uz)W=;gaBazw. (Ad)

On multiplying equation (A4) by W* and integrating over # we find

20 4 qle Iy — T, =0 ‘ (AB)
where p
L aw |2 - o '
Il:f [ —_— —|—a,’*’|W]2sz . (A6)
To=(k+ )fd r—aw| e (AT)
b—0 F ' ] —_ - .
? o | diF | |
: ’ d Id' W 2 2 2
1; = —_ — a2 2 —atW d AR
3 kVﬂ [ dz( o q, W) + @ ) @ ] z (AR)
d : ’
I._;:g:mzf B|W|?dz. . (A9)
) /0
Suppose now that
n=p+ig | (A10)

where p and ¢ are real. The imaginary part of equation (AB) gives _
9 (2pT; 4 Io) = 0. ‘ ' (Al1)
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Hence, if p is positive g = 0. Of course, has two roots and for one of them p is negative
definite. However, since the roots must be either real of complex conjugates, ¢—20
for hoth when one p is positive. . ‘ '

The two roots of equation (Ab) are
ni:ml_i_ +/q_ 41, (Is—14) —1l
|21y B

APPENDIX B

To remove the inconsistency from Assumption 3 let us reexamine the expansion
procedure which led to equation (23). We begin by expanding w and 9 in Fourier geries
in the horizontal direction : S

1w (&, 9, 2, t) = Z 9, {2, t) e®* - (B1)

6 (@, 9,21 = Z w, (7, 1) =°® (B2)

These should strictly be integrals in equations (B1) and (B2), but we have in mind
box-normalization. . :

Suppose now we introduce complete sets of functions congistent with conditions (2)
and (3). We can then write

w, (21) = Z B, ) ¥, (2) (B3)
' n=1 }
b ()= Y A ()P @) (B4)
n=1 - .

when @, and W, are members of the complete sets. If we multiply « by 6* and
integrate in the horizontal we now obtain

6 = wh* — Z m, 0, ¥, | - (B)
a m'
since the integration in the horizontal produces the function 3 {a —a’).
Here the matrix
Hiv == A Boa | | (B6)
has no time dependence since we have earlier agsumed that horizontal averaging removes
time dependence. . ‘ . |
If H°, were a finite matrix we could put it into canonical from with terms only

on the main diagonal avel the diagonal just above this. This cannot in general be done
for an infinite matrix, but we offer conjecture here that it is possible to put H7. into

%
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canonical form by a siwilarity transformation. Correspondingly, @ and Y. will be
trapsformed to new funetions, W,, and ©,,. For %0 we then have _
wezzz (o Woa O 70 Wiy 6, ] R :
a k4

In order now to give Assumption 3 precise meaning ‘we take W,, and 6, to be
eigenfunctions of the neutral stability equations for vertical velocity and temperature.
These equations are

AT
d dz 3 ‘
6 (dz2 ___,az) Wna - -—-R,m a’zwna (33)
and : : , - o .
3 g 2 ,
(Ed;_z“'“z) ( : ) (t;; _“2) O =Ry ¢*6,, B8)

One property of these eigenfunctions is that they are alternately odd and even for
successive n. Hince § must be even, we can conclude that v,, =0 and

AR e

Coa w==]

Equation (B9) iz intended to be a generalization of Malkus’ form for w®. Corres-
pondingly we may generalize Assumptions 2 and 3. First we have

Assumption 2 : For every a there exists an #o (a) such that «,, = 0 for n > n, (a)
n, (1)

Then, _
P 22« W, 0,. (B10)

a n=1

Assumption 3 then becomes,

~Assumption 3’ : For each a let #n. (a) be the smallest value of # such that R,. == R where B

- Is the (given) Rayleigh number of the problem, Then #, (a) + 1 = n. (a).

Assumptions 2 and & imply that there are finite ranges of n and a contributiﬁg
to the heat transport, In figure 6 we indicate the region in wavenumber space which

contributes to the heat transport spectrum. The sketch shows the

— n plane and
w

20

the lines indicate the v&lues of

and # which we sum over in equation (B10).
i ..

To complete the theory we should maximize H with respect to the a,, subject to
Assumption 1. The procedure is Qifficult to.carry out, however, and 8o far has been
possible only in the approximate form used by Malkus. This form is obtained by letting

nrg : .
W,a and 0, be sin — In this case a disappears from view and the maximization

becomes feasible.
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Indicating the eells in k space which contribute to the heat transport in the generalized statement.
' k.d

Only a projeetion on the n—

plane iz shown;

' : T
the complete region ts a figure of rotalion symmetric about the n-axis.

- INTERVENTIONS

Kovaszyay, — How is this applied to shear flow ?

SPIEGEL. — In one of the papers cited (MaLkus, 1956) the problem of Poiseuille flow in
a channel is treated. A second paper on the subject* shows the strong parallel hetween the
: A CA VN
channel flow and the thermal problems. The quantity corresponding to § is -—-d—;- where
‘ 2
U is the fully-developed, mean velocity profile and z is the coordinate transverse to the
' dz U

channel, In analogy with Assumption 1, — is required to be positive-definite. ‘

72
Malkus has employed a somewhat different expansion procedure in the channel problem
than we have described, but the general approach and the assumptions are retained. One
must find n, in exact analogy to the thermal turbulence problem; this requires the solution
" of the Orr-Sommerfeld equation with the fully developed profile. Solutions: of this kind for
higher modes in the z-direction have not been extensively studied”*, and there are some
gifficulties in caleulating n, However, Malkus has devised an approximation technidque to
find n, and has succeeded in deriving the familiar logarithmic velocity-defect law and an
acceptable prediction of von Karman's constant. : :

KrsTiN. — How is the theory related to the stability diagram ?

SPIECEL. — Presumably for each higher mode there is a neutral stability loop-in the
R,z plane where R, is the Reynolds tumber of the mean flow and z is the * downstream ”
wavenumber. I have never seen such loops caleulated for n greater than i, but if the analogy

* W.V.R, Margus, Transactions of the Brussels Meeting of the IUTAM. 1956.
** But Professors Kesrmy and MoRrxoviN have kindly pointed out the work of D. GROHNE, NACA
T™ 1417, Dec. 1957. :



200

to tl_mrmal turbulence holds, they should look like the sketch shown in fig. a. The dashed
vertical line shows the valme of Reynolds number in the experiwent.

ah

FIGURE &
Curves of neutral stahility for several Ytransversc” maodés in the shear flow problem.
The dashed vertical line indicates the given Reynolds nomber of the problem.

In the thermal problem the stability diagram is as shown in the second sketeh, fig. b.
This second sketch is related to the discussion of section 3. If we imagine that the
coordinate perpendicular to the R — a plane is v, the surfaces v + (R, @) intersect the plane
in the neutral stability curves. Figure ‘2 is then a trace of 7+ — & plane at the value of R
indicated by the horizontal line in fig. b.

da: U

. LiepMANN. — With no inflections (i.c. with — = 0) there is no instability. What
: dz?

do these stability considerations then mean ? Beichof : (In answer to Liepmann),

_ Perhaps, though the laminar profile is not unstable to infinitesimal disturbances, the
fully developed profile is. '

SPIEGEL. — Dr. Betchof’s conjecture is the one on which the theory must rest. Presumably,
the initial instability of the laminar profile is possible only through a finite amplitude
disturbance, but infinitesimal disturbances may well be able to draw energy from the
tully developed mean profile.

BateHrLoR, — The cutoff in the heat transport speétrum should not be at n,. An interval
beyond n, should be allowed for information to be lost. :

" SPIEGEL. — This question of how local in wavenumber space are the nonlinear inter-
actions perhaps cannot be answered precisely. But there are two points that I should like
to bring up in response to Dr. Batchelor’s remark.,

The first is that the kind of information which must be transferred is what we have
called the phase relations between w and ¢. Since the higher modes of w and ¢ are generated

by separate nonlinear terms (i.e. by u-Vu and u-V8), I would think that the phase relations
are lost after a very few interactions. ‘ : :
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= 0

Figure b .
Curves of neutral stability for several “vertical” modes of the thermal convection problem.
The dashed horizontal line indicates the givenRayleigh number of the problem.

Secondly, the modes just above n. are probably not much excited by those just below
n, since the later themselves do not have large amplitudes. Presumably the heat transport
tail derives much of its energy from modes with n « n,.. Thus even in the region just above
n, the excitation has traveled over some range in n.

In addition to these qualitative and somewhat vague justifications, there is the need to
satisfy the heat transfer law : :

AT R y1/2
H=—— | —— .
d R, 7
To derive this law in the Malkus theory it is necessary that
(n, + D2xR.

Since we know that this kind of dependence results from the stability argument, we are
almost forced to cut off the spectrum at n..



) DISCUSSION DE LA SECTION :
TURBULENCE STATIONNAIRE PLEINEMENT DEVELOPPEE

Professeur A. ROSHEKOQ, Secrétaire scientifigne

Professor Stewart opened the session and introduced Professor Hinze's paper with
the following remarks : ‘ -

One of the most striking features of turbulence, and yet a feature not usually made
central in theoretical studies, is its.* structural ” stability. Thus in a long pipe or channel,
or in a steady state turbulent convection system there is a remarkable contrast between the
detailed behaviour and the statistical hehaviour. For example in a pipe we find that no
malter how precisely we specify the initial values and the boundary conditions, we are
quite unable to predict the detailed motion for long times after the time of initial specifica-
tion. The reason iz clear — it is the fact that in strongly non-linear problems small causes
do not give rise to small effects. ' ‘

On the other hand, we find that no matter how crudely we initiate the flow, or how
drastically we distort i, after a comparatively short time all the statistical properties of
the flow closely approach their steady state values. This is the feature of turbulence which
is most clearly illustrated by steady, fully developed turbulent flows.

It is this feature which W.V.R. Malkus has sought to exploit in his theoretical work,
and I have therefore chosen to devote this session largely to an exposition of his work. To
begin with, I have asked Professor J.O. Hinze to examine the experimental data to which
any theory must conform. There have been certain common interpretations of these data
which are inconsistent with Malkus’s ideas, and it is pariicularly imporiant to sec whether
the data themselves demand these interpretations, or whether alternative views are
admissible.

Professor HinzeE then gave his address. At the conclusion of Professor Hinze's talk
Professor STEWART suggested that discussion be posiponed until after the prepared papers,
and called immediately for the next presentation.

The author of the second paper Dr. A, A. ToWNSEND, was not present at the Colloguium;
his paper was presented by Dr. I. C. B. NispeT.

At the conclusion of the talk, Doctor MAURIN wanted some clarification of hypothesis
(2) particularly as to what happens to modes higher than n,. Professor STEWART pointed out
that all modes can exist, but only those up to n, contribute to uw. Professor KesTin asked
whether Dr. Nisner could relate these modes to thé nsual stability diagram (ie, in the wave
number-Reynolds number plot), Dr. NisseT aitempted to do this, there were several infer-
jections from the floor, then Dr. SPieGeL gave his interpretation. ‘ '

 Dr. SpieceL was then .called upon to give his discussion of Marxus’s ideas. Following
Dr. SeiggeL’s talk, which had not been written out at the time of the colloquium, there was
considerable discussion and questioning of several points. A clarification of these has been
ineluded in the written report subsequently prepared by Dr. SeikeeL. The following is
merely a summary of the peints raised : ' '
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Effectiverment, les équations de la convection étant linéarisées pour que Fon en sache
former des solutions, la perturbation thermique, dont on étudiait la stabilité, apparaissait
comme le produit d’une fonction exponentielle du temps par une fonction trigonométrique
des coordonnées; de sorte que dans le plan elle s'étendait & Pinfini, et gque, ne constitnant
pas, dans le milien, Vobstacle que l'on peut contourner, elle ne pouvait subir Ia poussée
d’Archiméde due &4 la différence de densité qu’entrainait sa différence de température.

L’éguation de la convection, relative 4 la coordonnée verticale, ne peut donc contenir
Yindispensable terme gaT, origine de la convection; on se trouvait donc dans cette situation
assez exceptionnelle en physique, que la forme adoptée pour la solution mettait en défaut
les équatmns du probléme. Autrement dit, le probléme traité par les mathématlclens était
étranger a celui qu’il aurait fallu résoudre.

Comme on ne pouvait envisager de ne pas linéariser, la s1tuat1on semblait sans issue.
Je me suis tirée d’affaire, en premiére approximation, en étndiant indépendamment I’insta-
hilité thermique et Iinstabilité méecanique; et j’ai rapproché les deux points de vue, pour
obtenir le critére d'apparition de la turbulence, en jouant & la fois sur les coordonnées
eulériennes et les coordonnées lagrangiennes, ce ‘qui était légitime dans cette approximation.

Le résuliat a ¢t¢ la mise en accord, dans des conditions inespérés; de la théorie, et des
mesures. de BEnarp; la théorie a méme moniré que les tourbillons des diverses formes
pouvaient avoir une infinit¢é de dimensions (et méme ne pas avoir pour section droite un
polygone régulier); j"ai expliqué aiusi, avec une approximation de 1 %, les diverses dimen-
sions observés par BENARD, et qui étaient restées mystérieuses.

Il est vraisemblable que diverses théories linéaires sont passibles de I’ob]ectlon ici
présentée.
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The session on steady, fully developped turbulence was devoled to a discussion of the
work of W.V.R, MaLxvus, whose theoretical studies on turbulence are peculiarly suited io
such turbulent fields. Three formal papers were presented : an appraisal of the experimental
results by J.0. Hivze, and discussions of Markus's cuncepts with respcet to shear flow and
convecltive turbulence by A.A. TownsEND (presented by L C.B. Nisser) and by E. SPIEGEL,

Markus starts from four assertions or principles none of which have as yet been
derived from other well established phys:{cal principles.

These assertions are :

1, Mean fields of velocity and tempcerature can approach, but never exceed, the condi-
tion for marginal stability of a fluid with no viscosity. (It should be noted that in
the case of shear flow the condition is approached from the stable side — i.e. the
curvature of the flow does not change sign; while in convective turbulence it is
appx;oached from the unstable side and the temperature gradient does not change
sign

2, There exists a smallest scale of motion which contributes to the transport of

© momentum or of heat.

3. There exists an integral condition on the flow. For example this may be a maximiza-
tion, consistent with the other assertions, of the rate of energy release for a fixed
volume of pipe flow. '

4. The smallest scale of assertion 2 is that scale of motion which is margmally stable
on the mean field of the fully developed turbulent flow.

These 4 prineiples provide a complete theory from which the flow may be predicted
without adjustable constants. In the case of -a shear flow assertion 4 requires the use of the
Orr-Sommerfeld equation and thus severe mathematical difficullies arise. In the case of
conveetive turbulence the mathematics is much more straight-forward, but the experiments
for comparlson are not so0 good as might be hoped. Nevertheless the results of such
comparisons as can be made show remarkably close agreement, not only qualitatively but
guantifatively.

It should be noted that assumption 4 implies that the molecular constants v and K are
of importanee thronghout the flow even at high Reynolds numbers, This conflicts with the
usual assumption of Reynolds number similarity and the concept of “ rough flow ”. Hinze’s
examination of the experimental pipe flow data showed that although these assumpt:ons
are pol bad, the data still allows the interpretation that Reynolds number dependence
never disappears.

MaLxus’s theory of convective turbulence predicts a temperature profile which varies
as Z—1 near the wall (but away from the linear region right against the wall). The result,
which depends upon assertion 2 only, conflicts with the vsnal similarity resnlt T o Z-1/4,

4
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The experimenial observations still Teave much to be desired, but there seems to be some
support for MaLkus’s result. His theory of the shear flow vields a logarithmic profile for
the mean velocity, as does the similarity- argument. The similarity arguments in the two
cases can be made so parallel (see Appendix) that if ove is in question it casts great doubt
on the validity of the other, ‘

There was considerable discussion during the sessiop of the validity and importance
of the cut-off of assertion 2, ' ’

It turns out that even a small “ tail " after the cutoff importantly influences the results,
and the agreement with experiments seems io depend critically on an end to the transport
specirum which is sharp indeed. '

Townsend showed, in his paper, that a simplified approach using assertions 1 and 2,
(althought the choice of orthogonal functions, for the expansion which assertion 2 cufs off,
was arbitrarily taken to the trigometric — a choice which would be hard to defend logically)
together with a simple assumption which closely approaches assertion 3, yields profiles
qualitatively very close to. observed ones. Since he did not employ assertion 4 or any
equivalent he could not make quantitative predictions.

APPENDIX

~ Bimilarity arguments showing the close 'analogy of the shear flow and pure
“convection cases :
Shear Flow ‘ . Uonvection
1. Btress uw — u?is constant. Heat flow w8 = H is constant.
2. The only scale length is the height Z above the surface.

3. Rate production of turbulent energy at any level :
d
= d L ‘ agH
4 ‘ ‘ .
4 ’ - vez-T ez L)
N ’ & A 1 4 e
az’ d%
5. Ratfe of dissipation of turbulent energy :- '
eufZ—r ' @ ' Z—1
: au b | Y
6. - L e a C T/ o
\ dz = Z iz %
ar )3 74
or |—— | aZ™
‘ : . . . : dz
."2’__ . . UelnZ | TaZ—12

* The “prime” symbol is used to signify roet mean square. .





