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SOMMAIRE

Cette vue d'enseinble, bréve et superficielle, des travaux concernant la dynamigue de la
turbulence homogéne est destiné 3 donner une idée de I'état actnel du probléme. Le travail
est examiné sous trois titres suivanis: les tourbillons porteurs d’énergie, les procédéds
suggéres pour les calculs concernant la turbulence homogéne, et les propmétés de la
turbulence 4 petite échelle.

SUMMARY

This brief and superficial review of work on the dynamies of homogeneous turbulence
is intended to convey an impression of present understanding of the problem, Work is
reviewed under the following three headings: the energy-containing eddies, suggested
procedures for the calculation of homogeneous turbulence, and the small-scale properties
of the turbulence.

The notion of transfer of energy between components of turbulent motion characte-
rized by different length scales is a very old one. The interaction between different
components caused by the nonJdinearity of the esquation of motion eannot be described
completely by the transfer of energy, but energy transfer is physically its most important
manifestation. We may take the scope of this session to include all aspects of the dyna-
miecal interaction between different components, with particular reference to the transfer
ol energy.

When the mean velocity of the fluid is steady but not uniform, the mean and the
fluctnating velocities may both be regarded as composed of a set of components characte-
rized by different length scales, and transfer of energy may occur between components
of the mean velocity field and components of the fluctuating velocity field, as well as by
interaction of components of the fluctuating velocity among themselves. Some recent
theoretical work has been based on the supposition that the interaction of the components
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: 0f the fluctnating veloeity field ig here comparatively unimportant, at any rate so far
as the components with large length-scales are concerned. Whether this supposition be
valid or not, it remains desirable that we should understand the process of gelf-
modulation of the ﬂuctuatmg veloeity field. This is the only kind of interaction to occur
in homogeneous turbulence, and we may expect it to play an important part either when
the turbulent motion is not affected appreeiably by the presence of rigid boundaries,
as in many geophysical and astrophyueal contexts, or when the length scales of the
interacting clements are small, in any turbulent flow.

For many years affer 1935 most of the fundamental work on turbulence Was
concerned with homogeneous turbulence, this kind of turbulence being both convenient
fur experimenial study and apparently simpler theoretically in view of the absence of
the mean velocity field. This relative simplicity is not so apparent nowadays, and there
are welcome signs that the concentartion on homogeneous turbulence is being replaced
by an attack on a wider front. Considerations of the wider strategy of turbulence research
will no doubt arige later in the collogquium; so far as this session is concerned, the
objective is a critical essessment of the progress that has been made towards an under-
standing of the dynamics of homogeneous turbumlence. This first paper in the session
is intended only as a broad introduction to the session, and has no pretensions to being
a comprehensive survey.

A noticeable feature of work on homogeneous turbulence during the last 20 years
is the.increasing degree of subdivision and refinement of the problem. We can now
recognize many different aspects and charaeteristic properties of homogeneous turbu-
lence, many of which call for their own appropriate analysis and theories. A field of
homogeneous turbulence does not present a single problem which we might hope
to describe by means of a single theory or mathematical solution. It presents a many-
sided face, and has many recognizable typical features, just as laminar flow fields do,
and inevitably the trend in research ig toward isolation and separate treatment of t.hese
many features. The division of the whole range of eddy sizes into large, or energy-
containing, eddies on the one hand and smaller eddies on the other is now a familiar idea;
there ig algo a distinct range of sizes in which most of the mean-square vorticity resides,
and a range such that the remaining contribution to the velocity field is effectively a uni-
form straining motion. Each of these ranges has aequired its own set of observations, con-
copts, hypotheses and results. We have also learnt to recognize and analyse features rela-
ted to the continual extension of material lines, and features related to the smaller relaxa-

tion times of eddies of smaller size. This process of ‘ divide and conquer’ may seem to be
a poor alternative to the production of a grand all-embracing theory of turbulence, but
it is probably the appropriate course of development. At all events, theories with limited
objective ad scope are all we have at the moment, and all we seem likely to have, apart
from very ‘gemeral and concise, but probably powerless, formulations of the dynamical -
problem of the kind developed by Horr (1952), so that we must make the most of them.

~ Before considering several of the current ideas, let us recall the bare analytical
outlire of the dynamical problem. It seems to be generally agreed that it is possible
to define a Fourier transform A(n) of the velocity u(x) with respect to the position
co-ordinate x (more precisely, to define the integral of the Fourier transform over a
finite region of wave-number space), despite the fact that u is a stationary random
function of x. I think that some of the mathematical issues involved in this operation
need further consideration, one or two of which are not simply a need for justification
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of a procedure believed heuristically to be valid; for instance, it would be useful to
know how the Fourier transform is affected by the observed tendency for the energy
of small-scale components to be confined to certain randomly distributed regions of the
fluid. However, on taking for granted the existence of the Fourier tramsform of u(xj,
suitably generahred in the gtochastic and Stleltges senses, we may write formallv

u(x) = A(n)e“‘"‘ dn,

and find, from the equsation of motion, that
An 7
“—q-"aii—")— fn;‘A;,(n-——n’) {—' —I—%%;A;(D’)} dn’—-vnzA;(n) ,
7 .

where the integration with respect to m’ is over the whole of wave-number space.
Expressions may now be obtained for the rate of change of the cnergy spectrum tensor
[which is proportional te A;(n) Af(n)] and of other averaged moments of A. Thig

A . _ . .
expression for —aé-;i reveals the triad character of the imertial interaction of Fourier

components and the related dependence of the energy transfer on statistical relation-

- ships hetween the phases of Fourier components.

The history of research on the dynamicy of homogeneous turbulence is for the most
part a record of guesses or hypotheses about the consequences of the non-linear term in
this equation which render the mathematical problem partially tractable, After about
20 years of patient enquiry, it is relevant to ask : ig it likely that the dynamical problem
will ever be solved without the aid of hypotheses 7 I am inelined to think that it will not,
at any rate not in any comprehensive way, in view of the many effects of essentially
different character represented in the equation. The prospects for a strictly deductive

‘ ' — L
solution seem to be best in the case of the asymptotic state in which (W®)/%—-> 0
Yy

and nL:»1 (where L is a length representing the size of the energy-containing eddies},
and even here such a solution is not within sight,

It is also relevant to ask if progress on the purely observational gide is so rapid
that a proper mathematical solution is unlikely to be needed. Here T think the answer
is definitely no, mainly because there are too many quantities needed in a redsonably
complete deseription of the turbulence for observational coverage to be possible (espe-
cially if we take into account the smallness of the number of people willing and able
to make measurements of turbulent flow). The experimental scene has indeed been made
brighter very recently by success in attempts to measure temperature fluctnations in
the very high Reynolds number turbulence in a tidal channel off Vancouver Island
by Grant and his colleagues at the Pacific Naval Laboratory, and by a promising start
in the meagurement of rapid fluctuations of salt concentration in water, by people at
Stanford University; measurements of the spectrum and other properties of these two
quantities should supplement very usefully measurements of velocity fluctnations made
with & hot-wire anemometer. However, these and other prospective developmenis do not
alter the fact that even a partial deductive solution would be a most valuable preliminary
to a thorough nnderstanding of the problem.

=



The energy-containing eddies

During the 10 years beginning in 1945 there was a spate of work concerned with
properties of the eddies, or Fourier components, in the range defined roughly as that
containing most of the kinetic energy. Many measurements were made of the rate of
decay of the total energy per unit volume in turbulence generated behind a grid of
rods or bars placed in a nniform stream; the degree of spherical symmetry was observed,
and measurements were made of the form of the spectram, and of several of ity integral
moments, and a few were made of the so-called triple velocity correlation. Theories
were devised fo account for many of the significant featuves of these observations,
some with and some without success, and a reasonably coherent body of data backed
by some analysis and plausible physical argument was accumulated, A great deal was
accomplished, althongh there can be no doubt that the problem presented by energy-
containing eddies is not really solved and that it is too artificial a problem to justify
a continuation of intensive effort on the same scale. Left in the hands of experimenters
and people making direct use of the data, the Problem might have fulfilled its original
promise of providing a relatively simple case of turbulence which would allow the
development. of clear ideas about the effect of eddies of different sizes on each other;
but it was too atiractive (despite being too difficult) a problem for mathematically-
minded workers, and a large number of the theoretical contributions to the problem
now look both remote from reality and uninteresting.

One useful by-product of the period of concentration on homogeneouns turbulence
has been the firm establishment of statistical terminology, of the analytical methods
and concepts of probability theory, and of Fourier analysis. There was a time when
the uvse of such concepts was termed the “ statistical theory ", as if this was one of
several possible methods of approach, The current view, I think, is that the use of
correlation and spectrum functions, etc., is inevitable and that random funetion theory
provides the appropriate analytical framework for a description of turbulent motion.
Research on homogeneous turbulence, and on the properties of the encrgy-containing
eddies in particular, put random function theory on the turbulence map, and we may
- confidently expect that the same analytical concepts will become the accepted framework
for work on non-homogeneous and shear-flow turbulence.

Much of the work on the energy-containing eddies in decaying homogenecus tur-
bulence was based on the hope that there might exist a similarity state, in which all
functions describing the energy-containing eddies would preserve their form (perhaps
“only approximately) during the decay although with length scales which vary as
- some power of £. An hypothesis that such a similarity state exists yields a prediction
about the law of decay of total kinetic emergy, although it leaves unhdetermined the
self-preserving form of the variouns correlation ‘functions. The experimental evidence
gives partial support to the similarity hypothesis, but as more data has accumulated
it has become evident that it is only partial and that the similarity hypotbesis cannot be
more than a rough approximation to the actual state of affairs in turbulence generated
by a grid in a uniform stream. The main reason for this is not difficult to find, The

' L
characteristic time of the group of energy-containing eddies is &“2)1?) and is the same
: : ™ 7
a8 the time for on appreciable decay of energy, since decay takes place by the generation
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of small eddies resulting from the interaction of energy-containing eddies among them-
selves, Consequently the time which would be required for a similarity state of the
energy-containing eddies to be established, after the turbulence has been created with
particular initial properties dependent on the nature of the grid used, is of the same
order of magnitude as the decay time, and there is insufficient time available for the
erasure of the particular initial properties of the turbulence. For instance, if the
turbulence happens not {o be isotropic immediately downstream of the grid. (as appears
to be the case for grids of certain shape), it is not to be expected that it will become
closely isotropic before the turbulence has decayed appreciably. This is not to say that
a similarity state cannot exist; it may be capable of existing, but the initial conditions

would need to be chosen to conform with this similarity state if the mmﬂanty state
is to be observed in pr.u,tu.e

Even if it happens that a sumlamty state for decaying turbulence is capable of
exigting and that it can be established in a uniform stream by a suitable choice of the
generating grid, there remaing a questmn about the utility of the similarity state; It
has to be admitted that decaying homogeneouns turbulence does not occur often in nature
{no doubt because of its transient existence) or in technology, guite apart from the need
for a special set of Initial conditions if the similarity state is to be realized. Approximately
homogeneous turbulence which is maintained by a continual supply of energy occurs
more often, but here the properties of the energy.containing eddies are direetly deter-
mined by the nature of the mechanism sapplying the energy. I think we must conclude
that little more usgeful information can be obtained from theoretical analysis of
assumed similarity states of the energy-confaining eddies, and that further useful
developments are likely to require methods of analysing temporal changes in the statis-
tical properties of the energy-containing eddies — which makes the problem ahout as
dlffzcult as steady non-homogeneous turbulence.

Tt is convenient to place under this heading of the energy~conta1nmg eddies a remark
about the results obtainable from expansion of the spectrum function, and of other
Fourier transforms of correlation functions, in powers of the ware-number, on the
assumption thal all relevant integral moments of the velocity correlation functions
exist. Substitution of guch expansions in the dynamical equation yields the energy decay
law and the form of the spectrum function at very large values of ¢ when the intensity
of the turbulence is small and inertia forces are no longer significant, and yields also
certain constraints on the * big eddies ” during earlier stages of the decay. Later work
by ProupMan and Reip {1954) revealed, in another context, that ap assumption that
all integral moments of correlation functions continue to converge is not consistent with
the dynamical equation. It seems that, owing to the fact that the pressure at any point
in the fluid is determined by a Poisson-type equation and is ‘consequently influenced by
the whole velocity field, a statistical connexion between the pressures at two widely
separated points always develops, and that this in turn produces longrange connexions
in the velocity field. Certain integral moments of the velocity correlation are then not
convergent. The results which are legitimately obtainable from expansion in powers
of the wave-number have been carefully re-examined (BarcHrLor and Provomax, 1956),
and the one aspect of homogeneous turbulence which was believed to provide quick
returns from simple mathematics is now seen to be almost as horribly complex as other
agpect; the only remaining definite prediction is that the total energy ultimately decays,
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a8 =52 in the final period of decay, which is close to the result found experimentally.
Thig is probably a closed chapter in the history of work on homogeneous turbulence,
and is mentioned here ag an advertisement of the danger presented by the comforting
but usually invalid assumption of convergent integral moments of velocity correlations,

Suggested procedures for the caleulation of hdmogeneous turbulence

A number of analytical procedures have been suggested for the caleulation of the
spectrum function in homogencons turbulence and its variation with time, all of
which are capable in principle of any desired degree of aceuracy. In praectice, it is
doubtful if any of them can give much analytical information of real interest; nor
have they yet contributed significantly to our physical understanding of turbulence.
For these reasons I shall list the suggestions with only brief comment.

(@) Direct numerical integration of the goﬁerﬁing equations.

Rather surprisingly, the idea of simply making a numerical forward integration
with respect to t for one realization of a field of homogeneous turbulence, with an
arbitrary initial distribution of 4, seemns not to have been cxplored thoroughly. Some
years ago, Emmons (1947) attempted to caleulate the temporal change in the velocity
distribution in one realization of turbulent flow between paraliel planes, although the
number of steps .in ¢ was very severely restricted by the numerical techniques used.
In these days of high-speed computers there is scope for much more extensive calculations.
It would be worth-while, I think, to carry out a numerical integration of the vorticity
equation in one realization of a field of homogeneons turbulence, and to attempt to
verify direetly some of the speculations which have been made about the small-scale
structure of the turbulence. The numerical task iy enormous, but time and the continual
improvement of computing machines are on our side here,

(8) Bxpansion in powers of £. :
_The idea here is, in effect, to write u (x,¢) as a Taylor series in (t—t,) :

' oulx, )y | 1 . fotu(xt)

| u(x, ?) = u(x, {) ‘i"(tffu) {—‘—at—“—}fu‘F—i(t"—to)‘ “aT—} + .
in which the coefficients can be expressed entirely in terms of u (X, to} and its derivatives
. With respect to x by use of the equation of motion. Averages of products of the values
of w at different values of X, or their Fourier‘transforms, may now he expressed ag

power series in (£ —4;), and can be computed, in principle, when the mean values of
~ veloelty produets at time to are known. The strueture of the above series for u is such
that the coefficient of (¢ —ip)" involves terms of the rth degree in u or its spatial
derivatives, where # takes all values from 1 to n -+ 1; consequently, the coefficient of
{t —1to)® in the power series for, say, the double velocity correlation w(x,t) uy (& t)
involves moments of the velocity at time 4, of various orders up to » + 2. In other words,
the number of velocity moments which must be known at time #, in order to make
possible 4 calculation of a mean quantity at time ¢ increases with t—#,. We might
suppose, for the purposes of the calculation, that second-order moments of u are * known ”
at time 7o, by a combination of chbservation and estimation, and possibly also third aund
fourth order moments, but about higher order moments we have virtually no information.
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Consequently it is not possible to compute more than two or three terms in the
Taylor series.

The method of expansimi ih powers of £ is suitable for an ‘examination of the
immediate dynamical modification of some simple initial condition, such as that the
spectrum consists solely of a single line at some wavenumber magnitude. The more
important task of investigating the development of some kind of asymptotic state
{as t—w0) for arbitrary initial conditions is of course beyond the scope of the method.

() Expa.nsmn in powers of the Reyuolds number &.

It has occasionally been suggested that expansion of mean velomty produets a8 -8
series of positive powers of cither R or R ~! might be wseful, although I know- of no
interesting results obtuined in this way. A series in powers of R would be hopeless at the
high Reynolds numbers normally relevant to turbulence, and its use scems to be limited
to very large values of ¢ when decaying homogeneous turbulence is on the point of
extinction, A series in powers of R~ is not likely to reduce the basic difficulty of
coping with the non-linear terms in the equation of motion, because the zero-order term
in such a series retains the full impact of the non. ]meamtv and is out of reach of
caleulation,

(d) Replacement' of the velocity distribution of m by its firet # moments.

This seems to be the most promising of the various calculational procedures, and
it has ecertainly yielded the largest number of results, although the limitations are
severe. In as much as low-order moments of a probability distribution contribute more
information than high-order moments, we can obtain an approximation to the joint
probability distribution of the values of the velocity at two or more positions and times
by determining the first few moments of the distribution alone, with an arbitrary
agsumption about values of the moments of higher order. In this way the number of
unknown functions gpecifying the joint probability distribution is made finite and a
closed finite set of dynamical equations can be written down. Success in practice in
obtaining a good approximation fo the true solution clearly depends on being able to
retain as dependent variables a sufficiently large number of the low-order velocity
moments (two being the largest number retained in published work) and on a helpinl
choice of the values of the higher-order moments which are not being refained as
variables,

In this latter comnexion, there is some cxperimental evidence (BarcmELor, 1953;
Usero1, 1953) to smggest that, so far as the effect of the energy-containing eddies is
concerned, the joint probability distribution of u at two different values of x is roughly
normal, that is, that cumulants (normalized with ar appropriate power of the mean-
gquare velocity) beyond the second are roughly zero; a normal distribution is a plan-
sible property of the velocity contributed by the emergy-containing eddies, since they
presumably still have some of the independence associated with their generation by a
grid or some similar means. This suggests that a good choice of the values of ihe
cumulants not being retained as variables is zero. '

On the above basis (and w1th fourth and higher-order eumulants of the velocity at
two different values of X put equal to zero), & number of calculations (PrRoUDMAN and
Remp, 1954; Tarsomi, 1957) have been made concerning the decay of homogeneons
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. turbulence. These exploratory studies have not yet yielded much new information, but
they have shown that the approximations employed are capable of yielding an initial
distribution of the rate of energy transfer which in some respects ig sensible.

The idea of calculating fourth-order product mean valmes of various kinds from
an assumption that the corresponding cumulant is zero has been used in other connexions.
When the fourth-order product mean value contains only simultaneous values of the
velocity, and is used for the caleulation of properties of the energy-containing eddies,
either at the given initial instant or after a small time interval, the assumption seems
to be reasonably safe (although more experimental evidence is needed before novel
aspects of the results can be accepted). When used in other ways, it becomes a step in the
dark and the results are of uncertain significance; indeed some of the results obtained
by use of the assumption are definitely unplausible (CEANDRASEENAR, 1955, 1956; Kral-
CHNAN, 1961 ; O’BRIEN and Francrs, 1962). '

e) Kralcanaw’s analytical procedure,

A method of estimating the effect of the nonlinear interaction hetween different
Fourier coefficients has recently been suggested by Knarcawan (1959). It is claimed that
the method is but the first step in a series of successive approximations, so that it can
be grouped under the same general heading as the procedures. just mentioned. Dr. Proup-
MAN is making & critical assessment of the idea in this same session, and I shall say
no more here, :

The small-scale properties of the turbulence

: 1
We may designate the Fourier components for wave-numbers of magnitude n » 1—

as comprising the “ small-scale ” components of the motion. It is a familiar observation
(TaYLOR, 1938) that, for sufficiently large Reynolds numbers, most of the mean-square
vorticity is contributed by Fourier components with wavenumbers in this range, and
that the centre of gravity of the contributions to mean-square verticity moves towards
larger wave-number magnitudes, as the Reynolds number increases, withont change
in the form of the spectrum in the energy-containing range. In other words, the centre
“of dissipation is far from the centre of energy, and the deeay process involves transfer
of energy, by inertial interaction, over a large range of wave-numbers. These facts led
KonMocozory (1941) to formulate the hypothesis that the swmall-scale components of the
motion are in a universal equilibrium or similarity state determined by the viscosity v
‘and the rate of energy dissipation per unit mass ¢. The theory and its immediate conse-
_quences are wellknown and need not be reviewed here. Qur concern is more with ity
validity, as assessed in the light of current ideas and the available data, and with its
place in the subject today, 20 years after publication of the theory,

Bo far as formal deduction iz concerned, the theory is as much of a hypothesis as
it was at the beginning. Despite the extreme simplicity and generality of the hypothesis,
no deductive analytical argument has yet shown it to be true or false, and I know
of no line of argument which gives any promise of doing so. However, the rational,
-and physical content of the theory have been given a great deal of thought, and I think
it is fair to say that it grows more and more appealing. It was an indication of the
physical plausibility of the theory that Vor WeizsicRER (1948), and OnNsagxr (1945),
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and I understand OsukmOFF (1941) also, should have independently conceived the same
basic idea, or one very close to it, and since then the ideas of the theory have gained
wide acceptance. The universal similarity theory of the small-scale components has an
intrinsic naturalness and “ rightness ", and stands as one of the landmarks in the
development of fluid mechanies. This i8 not to say that I cannot conceive of the theory
being wrong; 1 am asserting that, relative to the state of knowledge in 1941 (and also
in 1961), the nniversal similarity theory makes possible a great jump forward in our
understanding of turbulence, and that, if it should prove to be wrong in whole or in
part, the reasons for this would be aimost as interesting as the theory itself.

“Observational tests of the theory have been sought during the last 20 years, but
ouly recently have useful comparisons between theoretical predictions and obgervations
become possible. Dr. Ervisox will be presenting an account of the available data
concerning the spectrnm and the theoretical implications, later in this. sesgion, -and,
ag you will have geen from summary of his paper, the n=53 law predicted by the
universal similarity theory in the inertial sub-range of wave-numbers stands up well
to the comparison. Earlier observational tests of the theory were mostly rendered
ineonclusive by the insufficiently large Reynolds number attained in the experiments.
The theory is an asymplotic one, and its predictions hold with increasing accuracy (if
the theory is correct) as R =0, but no theoretical estimate has been made of the actual
value of R needed for a given degree of accuracy. Consequently it is necessary to obtain
from the measurements themselves information about whether the high-Reynolds-number
conditions assumed in the theory (e. g. extensive separation of the energy and vorticity
spectra) do in faect hold. It seems, in (he light of a number of experimental investigations
of homogenecus turbulence generated by regular grids, that it is almost impossible, in
normal wind tunnels, to obtain a sufficiently large Reynolds number for an appreciable
ipertial sub-range to exisi; nor is this range any more likely to be established in a
shear-flow turbulence under laboratory conditions, The less extreme requirement that
an equilibrium or similarity range should exist can be met more readily in the laboratory,
but here the theory makes less specific predictions which are not easily checked by
experiment. The faet that the high Reynolds numbers to which the theory is relevant
are achieved in many turbulent flows oceurring naturally in the atmosphere and in the
ocean hag directed attention towards these flows, but the difficulties in carrying out.
controlled experiments are here very severe and only very recenily has a significant
comparison between the theory and observations in 2 natural turbulent flow been made
(GranT, SrEWarT, and MoiLuier, 1962).

The theory makes predictions about quantities other than the form of the energy
spectrum, and it is desirable that some of these should be subjected to searching obser-
vational tests. Especially interesting would be measurements at very large Reynolds
vumbers of some of the dimensionless moments of the probability distribution of velocity
derivatives, all of which should be absolute constants according to the theory, The
available measurements of the quantity :
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whichk is relevani both to cnergy transfer rates and to rates of extension of vortex
lines, suggest that it is still decreasing (in magnitude) at the highest Reynolds number
of the measurements, and we cannot yet be sure that the asymptotic value is DON-ZEro.
Quite apart from the testing of the universal similarity theory, measurements of
moments of velocity derivatives might throw some light on the structure of the small-
scale motion. We know that the flatness factors -

{55) )

show a remarkable increase as # increages from 0 to 4 (BarcurLor and TowNsSEND, 1949),
for which only 4 tentative explanation is available. This explanation supposes that the
energy associated with a Fourier component for a large wave-number is confined to
certain randomly distributed portions of the fluid, whose total volute is a dimishing
fraction of the whole volume of the fluid as the wave-number increases. In other words,
it is suggested that there is an increasing degree of spottiness in the spatial distribution
of energy of small-scale components. Further experimental investigation (of the kind
carried out recently by SiNDRoORN (1959) in a turbulent boundary layer} is needed before
the explanation can be accepted and before we can be said to have an understanding of
the small-scale structure of turbulence, ‘

No short assessment of the place of the universal similarity theory today is complete
without a remark about the extensive use to which the theory has been put in a wide
range of physical problems. A common initial reaction to the theory was that, although
it was intrinsically interesting, it would not have much practical value since it said
nothing about the eenrgy-containing eddies and important quantities such as rates of
transport of momentum and heat. Since then we have become aware of the large number
of physical processes to which the small-seale compenents of a turbulent motion are
relevant, and the view of utility of the theory has changed. Here iy a partial list of the
various problems to which application of the universal similarity theory has been made :

(e) Belative dispersion of floating particles and marking agents in the atmosphere;

(b) Spectrum of clectron density in the ionosphere and consequent maguitude of

 scattered radio waves of short wave-length ; '

(¢) Break-up of drops of one liquid immersed in another in turbulent motion;

(d) Mixing of two fluids in turbulent motion; '

(¢) Generation of magnetic field in clouds of ionized hydrogen in the galaxy.

A pattern of procedure which has been used on several oceasions in theoretical
work, and promises to be used even more often in future, is to combine the universal
‘similarity theory with an auxiliary hypothesis in order to make possible some fairly
definite predictions about the small-scale properties of turbulence. Several important
groups of such auxiliary hypotheses can be recognized.

- Each of the auxiliary hypotheses in the first group prescribes a relation between
the rate of transfer of energy across wavenumber # in the equilibrinm range and the
- energy spectrum function (of which that suggested by VoN WrmZsickER (1948) and
Hewsenrere (1948) is perhaps the best known), and thereby allows the calculation of the
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form of the spectrmm function over the whole of the equilibrium range. Dr. Ellison
will be describing the degree to which these predicted spectrum forms are consistent
with the available data. In this connexion, I think we should keep in mind that the
contribution to our understanding of the nonlinear transfer process that iz made by
a transfer hypothesis which happens to give a specfrum function close to what is
observed depends on the clarity of the physical principle or mechanism underlying the
hypothesiz, If this physical foundation is obscure or non-existent, we can infer only
that such-and-such a relation between the trapsfer and spectrum functions seems to
represent the facis correctly; we might feel dxsposed to go shead and use ‘the same
transfer function under other conditions, outside the range of available measurementl,
and make further predictions, but this is largely a gain of convenience and leaves the
why and the how of the original success unexplained.

A second and smaller group of anxiliary hypotheses Wlnch have ylelded SpElelC'
results when combined with the universal similarity theory are of a Lagrangian character
and concern the random straining motion experienced by a material element of linear
dimengiong small compared with (v3/s) /4, which iy the represemtative size of the
vorticity-containing eddies. It seems to be pu.rely a matter of kinematies that such an
element becomes long and narrow and tends continually to align itself with the
direction of the greatest ingtantaneous positive rate of strain, and thereby to be ex’oended
at a rate which makes only moderate fluctuations about a non-zero posmve average. By
assuming, as an approximation (which may not affect the form of the results), that these
fluctuations in the rate of extengion are absent (as in fact was first suggested by
TownseNp (1951b) from data concerning the rate of cooling of a hot material element
of fluid in turbulent ﬂow) it is possible to determinc the form of ihe spectrum. of a con-
vected scalar quantlty of small diffusivity (compared with v) in the equilibrium range
of wave-numbers (Barcarior, 1959). Similar methods are being used in an investigation
of the spectrum of a convected vector guantity with small diffusivity. It has been appre-
ciated for some time that a Lagrangian view of non-linear interzctions may be helpful
in a qualitative way (for example, in the matter of production of mean-square vorticity
by extension of vortex lines); the more recent work uses Lagrangian considerations
guantitatively, at any raté in investigations of the interaction between the velocity
field and that of some convected quantity. TownseND (1951a) has used such ideas in the
construction of a model of the flow at length-gcales small compared with (v?/e)*/4, with
a view to representing one aspect of the gelf-interaction of the velocity field, but the
model is not free from difficulties, one of which is that continued straining of a
material body of fluid in which vorticity is a stationary random function of position
leads to indefinite increase of the mean—square vorticity des;nte the action of viscosity
(PearsoN, 1959).

The related problem. of determmmg the spectrum, in the ethbrmm range, of e1ther
a convected scalar or a convected vector quantity of large diffusivity has also been
tackled successtully (BarcrrLor, Howeris and ToWNSEND, 1959 ; Mon‘mm', 1961), although
by different methods, not of a Lagrangian character.



; o Conclading remarks

It is our business at this colloquium to make a dispassionate assessment of the
present state of knowledge of turbulence, and I presume that some kind of picture
will emerge as a result of our deliberations. The considered views of most people here
bave yet to be heard, and it is solely as a possible spur to discnssion that I ventnre to
give my own opinions in this very superficial review of work on the dynamics of homo-
geneous turbulence.

Speaking very broadly, the basic dynamical problem has been in the doldrums, to
some extent, during the last 10 years, and has been in need of good ideas amd new
lines of approack. Formal mathematical investigations have produced remarkably Iittle
of value; successful theoretical work has more often taken the form of simple deductions
from an assumed plausible phiysical model of a limited aspect of the flow, Work on the
dynamics of the energy-containing eddies has more-or-less run its course, for the reasons
I have mentioned. A number of general procedures for calculation of various dynamical
aspects of homogeneous turbulence have been devised, but none of them impresses me
as being likely either to advance our understanding of turbulence or to achieve results
on which we can place reliance. The universal similarity theory of the small-scale
components of the motion stundg out in this vather grey pieture as a valuable contri-
bution, of which an increasing number of applications is being made, especially in
problems invelving convection and diffusion of sealar or vector properties of the flnid.
There is a need for two kinds of further work in conmection with this theory; first, for
some mathematical proofs of some of the notions of the theory, such as the increasing
degree of disorder accompanying transfer of energy to larger wave-numbers, and second,
for measurement of the mean values of third and fourth powers of velocity derivatives
at very high Reynolds number. The latter measurements might also throw light on the
obscure and interesting question of the way in which the energy of the small-scale
components is distributed over the flgid. ‘ o
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RELATIONSHIPS AMONG SOME DEDUCTIVE
THEORIES OF TURBULENCE

Robert I, KRAICHNAN

Institute of Mathematical Sciences, New York Univeréity
New York 3, U.5. A,

SOMMAIRE

Une bréve discussion gqualitative est donnée de quelque parenté entre plusieurs mé-
thodes déductives de la théorie de la turbulence isotrope, gqui ont progressé dans la
derni¢re décade. Ainsi de la formulation de I'équation fonctionelle de Hopr, développement
des moments des vitesses en puissances d’un nombre de Reynolds caractéristique, I'appro-
ximation de quasi normalite de PROUDMAN et REm et TATSUMI, ct les développements des
perturbations modifiées de KnaicHNAN et Wyin.,

SUMMARY

A brief and qualitative discussion is given of some relationships among several deductive
approachs to isotropie turbulence theory -which have beéen advanced in the past decade.
Included are Hopr’s functional equation formulation, expansion of velocity moments in
powers of a characteristic Rey~oLns number, the suasi-normality approximation of Provp-
MaN and REID and Tatsvmi, and the modified perturbation expansions of KRAICcHNAN and
WyLbp. '

In the past decade there have been a number of attempts to derive some of the
properties of isotropic turbulence by deductive mathematical procedures, with the
Navier-8tokes equations of motion as the starting point. The present talk is intended
to bring out some similarities and differences among several of these attempts. We
shall include Hopf’s functional-equation formulation [6,7], expansion of velocity-mo-
ments in powers of a characteristic Reynolds number [4], the quasi-normality appro-
ximation as used by Prounman and Ruip [14] and Taxrsvwms [15, 16], and the modified
perturbation expansions of KralcENaN [8-10] and Wyrp [17]. The treatment will be
brief and qua.litative A more extended presentation of some of the material to be covered
hag been given elsewhere [11].

For simplicity, let us consider the following idealized. problem A gtatigtically
homogeneous and isotropic ensemble of incompressible flows is established with. a
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velocity distribution whick is multi-variate normal at the initial instant. The initia]
distribution thus is completely specified by the initial velocity covariance tensor [11.
Let the initial state be characterized by the Reynolds number

' ol
Ru-"‘: oo

v
where 2, is the r.m.s. velocity in any direction, I, is a suitably defined macroscale {length-
scale of energy-containing eddies), and v is the kinematic viscosity. It is desired to find
the velocity moments at later times as the flows evolve according to the Navier-Stokes
equation. In particular, it is desired to follow the evolution of the velocity covariance
tensor and the associated wavenumber-spectrum of kinetic energy.

This problem leads to coupled equations of motion for the velocity moments of
all orders [1]. The coupling is due to the nonlinearity of the Navier-Stokes equation.
The various attempts at deductive theories of isotropic-turbulence dynamies have been
concerned largely with finding mathematically plausible and well-defined approxi-
mations which reduce the infinite set of coupled moment equations to a closed, finite set
that ylelds physically acceptable solutions. The successes which have been achieved are
very modest, Severe theoretical difficulties are posed by the combination of strong
nonlinearity and strong dissipation which characterizes the problem for Ry 3 1. The
strong nonlinearity makes perturbation expansions of usual type inappropriate, and the
strong dissipation precludes use of the techniques of equilibrium statistical mechanics,

~ Hopr [6,7] has reformulated a particular infinite subset of the complete set of
coupled moment equations as a single functional equation for a characteristic functional
of the velocity distribution. The momenis involved are those which have simultaneous
time-arguments. The reformmlation does not in itzelf constitute progress toward a
solution of the equations, However, it suggests several successive-approximation schemes,
in particular the expansions in powers of By and in cumulants which we shall now
discuss. It should be noted that Hopf’s formulation may be generalized so as to include
the moments with non-simultaneous time-arguments. '

A straightforward method of generating approximate solutions for the velocity
moments is to expand them in powers of Ro, after transforming to appropriate dimen-
slonless variables [11]. The expansion for the veloecity covariance temsor i found to
contain all even powers of Ry. The coefficient of Ro** is a linear functional of (2 # 4- 2)-th

- order moments of the zeroth-order, viscous decay field. The latter field is that obtained

by retaining only the linear terms in the Navier-Stokes equation; it is a linear functional
of the initial velocity field and thus is. normally distributed. Tt follows that the
coefficients in the expansion of the exact velocity covariance tensor can all be expressed
in terms of the covariance tensor of the viscous-decay field by use of the rules for
evaluating higher moments of a normal distribution [17.

The difficulty with the power-series expansion is that it may be expected to converge
well, if it converges at all, only for Ry <C 1, whereas the ecase of greatest interest is
Ry » 1. Convergence has not been demonstrated even for Ko « 1, but it is plausible
that the expansion is at least asymptotic in this range.

The expansion of the velocity covariance in powers of R, corresponds to an expan-
sion of Hopf’s characteristic functional in a functional power series [7]. Truncation of

the R, -expansion after some finife power corresponds to truncation of the functional

series. This fact suggests the natnre of the errors which can arise from using truncations
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of the Ry-expansion as approximations for the velocity moments : The truncated charac-
teristic functional corresponds, in general, to a probability distribution which assigns
negative probabilities to certain flows. A consequence is that the approximations can
lead to negative kinetic-energy wavenumber-spectra B (k) for some values of #. It is not
difficult to verify that this actually oecurs at high R,. The negative values of E (k)
typically arise in the spectrum region which has the strongest initial excitation (initial
energy-containing range). Thus the power-series approzimations lead to qualitatively
unacceptable consequences. This difficulty does not arise, however, if Bo i very small,
or if the time of evolution is very small,

A gecond approximation scheme suggested by Hopf’s functional equation formu-
lation consists of suecessive truncations of an expansion of the velocity moments into
cumulants. This expansion corresponds to expansion of the logarithm of Hopf’s charac-
teristic. funetional in a functional power-series. The truncations yield closed sets of
dynamical equations whick involve only moments below a finite order. The first
nontrivial approximation is obtained by discarding the fourth-order cumulants. This
yields the quasi-normality approximation proposed by Muriowsreaixov [12] and exploi-
ted by ProupMan and Reip [14], Tarsomr [15, 16], and others.

There is & mathematical relation between the approximations to the velocity cova-
riance (or spectrum funetion) obtained by truncating the Re-expansion and those
obtained by truncating the cumulant-expansions. Suppose that all cumulants above
order n + 2 ave discarded and the resulting dynamical equations are solved to yield
the velocity covariance. The resulting approximate expresgion may be expanded in
powers of R,, and this series may be compared with the full, formally exact power-series
expansion of the covariance. One finds that the two expansions agree precisely up to and
including order Ry?". In each higher (even) order, the cumulant-discard result contains
4 non-vanishing contribution, but this contribution consists of only some of the terms
from the exact expansion. The successive cumulant-discard approximations may be
regarded mathematieally as successively more comprehensive partial summations of all
orders of the formally exact power-series cxpansion for the covariance tensor.

As the preceding paragraph suggests, for very small R, the successive cumulant-
discard approximations are indistinguishable from the smccessive power-series trun-
cations. This is also true for any Ro, provided the time of evolution is short enough. The
fact that each cumulant-discard approximation, even the lowest, contains all powers
of R, raises the hope that these approximations may remain valid for large R, and
times which are mnot short., Unfortunately, this does not appear to be the case. The
domains of validity of the cumulant-discard approximations and the simpler power-series
approximations appear to be essentially the same, and outside the domain of validity
bothk sets of approximations give rise to the physically unacceptable phemomenon of
negative values for E (k). Negative values of E (k) arise in the cumulant-discard appro-
ximations because, as in the previous case, the truncated characteristic functional implies
negative probabilities. : :

The serious negative probability troubles which arige in the cumulant-discard
approximations have recently been demongtrated by several authors. Bercmov {2] has
found that the vorticity equation obtained by Provpman and Rem [14] is inconsistent
with a positive-definite probability distribution. Ocura [18] has found by direct nume-
rical integration that the spectrum equations of Prounman and Rein [14] and Tatsv-
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M1 [15] yield negative values of E (k). As in the case of the power-series approximations,
the negative values of E (k) oceur in the spectrum region which constitutes the initial
energy-containing range, and they are comparable in magnitude with the initial spectrum
level in this range. Fraxcis and O'Briex [5] have found that analogous results oceur
when the quasi-normality approximation is applied to the convection of a scalar field
by isotropic turbulence. The unphysical results associated with negative probabilities
persist in the higher cumulant-discard approximations [11].

An approximation scheme based upon 2 sequence of modified perturbation expan-
sions has been proposed by the present author [8-10]. The approsimations are dynamiecal
in patore and are not made directly upon the probability distribution. The scheme
involves the velocity moments for non-simultaneous as well as simultaneous time- -APEU-
ments, In addition, it involves, in essential fashion, the functions which give the mean
regponse to infinitesimal external perturbations of the amplitudes of the various spatial

Fourier modes. Thus, the scheme cannot be represented within the present framework
of Hopr’s formulation. -

In the lowest or direct-interaction apprommatmn the triple correlation of the
amplitudes of each triad of spatial Fourier modes is replaced by the contribution to
this correlation which is induced by the direct dynamical interaction of the three modes,
acting against the relaxation effects produced both by viscosity and by the coupling of
each. of the three modes fo all the rest of the Fourier modes. The result is a pair of
closed equations which determine the velocity covariance tensor and the response
functions of the Fourier medes.

This approximation differs from the first nontrmal truncation of the Rg-expansion
for the triple correlation in that the latter approximation corresponds to retaining only
the relaxation effect of viscosity. Crudely speaking, we may say that the additional
effects retained in the direct-iriteraction approximation represent the action of * eddy-
viseosity ” wpon the individual Fourier amplitudes. In the energy-containing and inertial
ranges at high Ro, the direct effects of ordinary viscosity are negligible compared to those
of eddy-viscosity. The two approximations differ profoundly in these ranges, except at
very short evolution times, when they are indistinguishable.

If the direct-interdction approximation for the veloecity covariance tensor, or spec
_ trum fanction, is expanded in powers of R, we find that, like the quasi-normality
approxxma.hon, the result agrees precisely with the exact expansion up to and including
the terms in Ro% All higher (even) powers of R, are present also, and the coefficients
of the higher powers again correspond to certain terms from the coefficients in the
exact expansion, Like the quasi-normality approximation, the direct-interaction approx-
imation may be considered an infinite partial summation of the exact expansion,
However, the two approximations represent very different partial summations. The
higher powers of Ry in the direct-interaction result represent the eddy-viscosity effects
mentioned in the preceding paragraph. These effects are not included in the results of
Proudman and Reid and Tatsumi, as may be seen by examining the energy-transfer
expression obtained by these authors [8]. For Ry « 1, or for sufflmently short evolation
times at higher R,, the eddy-viscosity effects are negligible, and in this case the quasi.
normality approximation and the direct-interaction approximation are both indistin-
guishable from the first power-series truncation. For high Ry, and times which are not
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short, the quasi-normality and direct-interaction approximations lead to very different
results,

The direct-interaction approximation can be interpreted as an exact description of
the behavior of a dynamieal model [9,10]. A congequence is that negative values of E (),
which characterize the powerseries truncations and cumulant-discard approximations,
cannot occur, It hag not been proved that this holds also for the higher approximations
in the present scheme. However, the second approximation has been investigated in
part, and the results indicate that negative probability troubles in fact do not arise [10].
The second and higher approximations are defined by more elaborate dynamical appro-
Ximations. They correspond to successively more comprehensive partial summations of
coutributions from all orders of the exact expansion in powers of Ro.

WrywLp [17] has recéntly presented a formulation of the isotropic turbulence problem
which follows closely certain techniques that have been used to investigate the renor-
malization problem of quantum electrodynamics. Like the schemes already discussed,
the regulting formalism leads to infinite partial summations of expansions of quantities
in powers of Ry. Wyld’s equations involve the velocity covariance with non-simnltaneous
arguments and the average regponse functions which occur in the direet-inferaction
approximation. In addition, Wyld employs certain functions suggested by the vertex
operators of quantum electrodynamics. These functioms correspond to certain higher
response functions that arise in the higher approximations cited in the preceding
paragraph.

Wyld is able to represent in his formalism both the applomma,hon of Cran:
DRASEKHAR [3], which is based on an extension of the guasi-normality approximation
to moments with non-simuitaneous arguments, and the direct-interaction approximation.
However, when so franscribed, neither approximation seems to have as clear a physical
motivation ag it did before. The original statistical or dynamical approximation is
replaced by an abstract recipe for collecting infinite sub-sets of perturbation-theory terms.

The hope offered by Wyld’s formulation is that it may suggest useful higher appro-
-ximations which differ from those of the previous schemes. In this connection, however,
the lack of a clear physical interpretation of Wyld’s groupings of terms from the power-
series expansions raises serious apprehension. We have seen that two of the approxi-
mation schemes examined in this talk lead to negative probabilities and negative values
of E (k). This shows that the turbulence problem is unpleasantly sensitive to precisely
what approximation is made. It is substantially more sensitive than quantum electro-
dynamics, which is essentiaily a weak-coupling problem. There seems to be little indi-
cation in Wyld’s formulation as to whether the higher approximations to which it may
lead will be free of negative spectrum troubles or not. Meanwhile, it is disc«_mcerﬁng that
Chandrasekhar’s approximation, which gives serions unphysical conseguences [8], fits
naturally into Wyld’s scheme.
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APPENDIX

Note : This Appendix represents a consolidation and elaboration of remarks made by
the author in the course of informal discussions during the Session.

‘Dr. PROUDMAN has raised the question of how similar are the quasi-normality and
direct-interaction approximations. T should like here to extend the remarks made on
this smbject in my talk.

The differences In the assumptions underlying the {wo approximations have been
mentioned in the text. The quasi-normality approximation involves neglect of fourth-
order cumulants. The direct-interaction is a dynamical approximation and says nothing
directly about what cumulants survive. Suppose that the NavierStokes equation is
used to eliminate third-order moments in the equation of metion for the simultaneous-
argument velocity covariance and replace them by expressions invelving fourth-crder
moments. The latter may be written as the sum of a normal part and a part consisting
of cumulants. In the quasi-normality approximation, as used by ProupMan and Reip [14]
and Tarsvuz [15], the normal part is retained and the cumulants are put equal to zero.
The direct-interaction approximation corresponds to retaining the normal part and giving
the cumulants #non-zero values determined by the dynamical approximation for the
eliminated third-order moments. This approximation does not correspond to putting
cumulants of any order equal to zero in the equations of motion for the velocity moments,

It should also be noted that the eqﬁations of the direct-interaction approximation
involve, in essential fashion, the average response functions of the Fourier modes. These
quantitiezs do not enter into the quasi-normality equations.

So far as I have been able to discover, the extent of the relation between the
quasi-pormality and direct-interaction approximations in the problem at hand is that
they both agree, through terms in Re% with the formally exact expansion of the
velocity covariance tensor in powers of R, Thix means that for very small times or
small R, they give indistinguishable results. In this case, however, neither approximation
offers any advantage over the simpler approximation of truncating the expansion of the
coyariance tensor after the terms in R¢*; all three approximations give results which
dlﬂfer inappreciably.

For large Ro and times which are not very short, the case in which the quasi-nor-
mality and direct-interaction approximations are interesting, they differ profoundly. The
guasi-normality approximation, like simple truncation of the Ry-expansion, leads to large
negative values of E (k). The direct-interaction approximation cannot give negative E (k).
Ogura’s results [13] show thal the negative values first occur in the spectrum region
which comprises the energy-containing range of the initial velocity distribution. The
‘consequences of the quasi-normality approximation therefore appear to be qnahtahvelv
inadmissible on physical grounds in the very spectrum region where originally it was
hoped the’ approximation might be most appropriate,

The fact that quasi-normality leads to negative spectra and the direct-interaction
approximation does not is associated with a fundamental and easily described difference
in the energy-transfer functions given by the two approximations. As discussed in [8],
the direet-interaction energy-transfer function acts in the direction of producing equi-
partition among the various wave-number modes. If at any time the excitation in a given
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mode is zero, the approximation yields a positive energy-flow into that mode by nonlinear

transfer from the other modes. This situation is physically plausible and resembles
many other cases in statistical physics,

A very different sitnation obtains in the quasi-normality approximation. The
difference isx particnlarly clear in the spectrum regions where the direet effects of
viscosity are negligible. There we find that the quasi-nermality approximation does
not yield a transfer of energy which tends in general to produce equipartition. Rather
than the rate of energy-transfer itself, the time-derivative of the rate of energy-transfer
vanishes in equipartition. Thus the energy transfer function has a long memory : If it is
negative in a strongly excited spectrum region (as in the energy-containing range in
the initial period of decay), it remains negative in that region aefter the time the modes
therein have fallen below equipartition with the initially more weakly excited neighbo-
ring modes. Consequently, the energy-spectrum exhibits an unphysical overshoot beha-

vior, and it is this which leads to the negative spectrum regions which Ogura has
demonstrated

If one assumes that a steady-state of a certain sort has been achie\%ed, one can
extract from the quasi-normality approximstion an “inertial-range ” law which goes
either as k! or as k~%, depending on just what assumptions are made [8, 16], Ogura’s
calculations suggest that these results are illusory and that, instead of reaching A quasi-
equilibrium, the speetrum will evolve from prescribed initial values to a pathological
form which does not bear even a qualitative resemblance to physically oceurring spectra.
Recent work by the present author (involving nonlinear systems with finite numbers of
degrees of freedom) suggests that the quasi-normality approximation at high R, may
actually lead to infinite negative values for E (%) within finite times after the initial
instant. If so, this raises the possibility that the vorticity .singularity at finite time,

which ProupMaxy and Rrip [14] obtained for infinite Ro, may be associated with such |
behavior. :

In contrast, the direct-interaction approximation leads to a non-pathologieal inertial
range in which energy-transfer proceeds by a dynamieally stable local cascade process [8].
The asymptotic inertial range law has the form %—3/2, which differs only slightly form
the generally accepted Kolmogorov k—53 law. The difference in power law actumally
represents an important departure in dynamics from that called for by the Kolmogorov
thoory. Moreover, it can lead to large quantitative errors in the absolute spectrum level
in the inertial range at sufficiently high Ro. Nevertheless, the direct-interaction appro-
ximation appears to represent the only deductive theory published which really gives
an inertial range at all. The self-consistency of the approximation permits the hope that
1t represents the first in a convergent sequence of successive approximations. Work on the
second approximation (mentiomed in the text) is at an early stage, but results to date
suggest that it will reduce by an order-of~-magnitude the quantitative error of the direct-
interaction approximation in the inertial range. Numerical results which have already

“ been obtained in the simpler problem of turbulent dispersion give additional support

to this indication. Both the direct-interaction approximation and the second approx-
imation have been applied to the determination of the probability distribution for the
displacement of a fluid particle conveeted by isotropic turbulence, with neglect of

moleculur diffusion. In the second approximation, the errors are typically reduced by
a factor of over ten [11].
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In the energy-containing range, it is possible that the direct-interaetion approxi-
mation itself may give acceptable quantitative approximations to the speetrum. Appli-
cation of the approximation to nonlinear systems with finite numbers of degrees of
freedom has given some support to this hope. It is possible that the appreximation may
be quantitatively adequate for investigating shear-turbulence and thermal-turbulence

problems where the inertial range either is non-existent or plays a minor role in the
dynamics, '
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SOMMAIRE

Cette communication est une bréve revue des fondements cinématiques et dynamiques

de la théorie de KRAICHNAN pour la turbulence homogéne. Dans la partie cinématique, 'hypo-
_thése de Knaicenan de « faible dépendance » est reprise en termes de représentation de la
turbulence par l'intégral de FoURIER, et la voie par laquelle cette «hypothése» est une

conséquence de I'homogénéité est indiquée. Dans la partie dynamique, la connexion générale

entre Phypothése de Kraicanan < d’interaction direcie » et les théories danc lesquelles on

suppose nuls les cumulants du quatriéme ordre, est examinée. Il est suggéré que la théorie

de KRarcHNaN a les mémes défauts trés généraux que les théories aux cumulants du quatneme

ordre nuls, et qu’'il est pen vraisemblable gu’elle conduise 4 des résultats utiles — spécia-

lement pour les plus petits tourbillons, pour lesquels elle conviendrait théoriquement.

SUMMARY

This paper is a brief review of the kinematical and dynamical foundations 01‘
Kraicunan's theory of homogeneous turbulence. In the kinematical part, KRAICHNAN’S
¢« weak dependence hypolhems » is recast in terms of the Fourier integral representation
of turbulence, and the way in which this ¢ hypothesis» is a consequence of homogeneity
is indicated. In the dynamical part, the general connection between KRalcHNAN's « direct
interaction hypothesis » and the zero-fourth-cumulant theories is examined. It is suggested
that KRAICHNAN’S theory has the same very general faults as the zero-fourth-cumulant
theories, and that it is not likely to lead to uscful results — especially for the smalier eddies
to which it is conceptually most suited.

KRAICENAN’s analysis of homogeneous turbulence (see, for example, KrAICHNAN, 1959}
is cast mainly in terms of the Fourier coefficients of the velocity field. The turbulent
field iz supposed to be spatially periodic with very large period L, and the velocity may
then be expressed as a Fouriér series

u(x f)_EA(k t)e‘““‘ (1)

where the summation is over all wave numbers permitted by the cyclic boundary
conditions. In this talk, however, I shall use the Fourier integral representation (zee
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BATCHELOR, 1953) in which the large length necessarily introduced in the setting up of
any Fourier representation of a stationary random function is used to define a box

. 1 3
B (k, i, L) = (—2;—-) fu (%, t, L) e~%x gx ’ (2)

where the integration is over all space, and the integral of B over a finite region of
k-space is known to have a finite limit as L —» . Thus

dZ(k, ¢) = limf Bk, t,Lydk,
vik)

L= w

where V(k) is 2 volume element swerounding k, and

: ; — S, kg, 1 - idkg,
dZ(k,t): 1'.fu(x’t)9“m'x ((’ : l)(e "aj 1)(6 83; 1) 3)
(2m)® — iy — T2 — 4P3

when k and k 4 d% define opposite vertices of a sruall parallelepipedal element V{k).
The inverse relation, corresponding to (1), is then ,

C uxh = f e*x dZ(k, t). (4)

While there are certain formal advantages in developing am analysis which is
independant of the scale L, there is no essential physical digtinetion between (1) and (4),
and I am not recasting Kraremnan’s analysis in terms of an integral representaiion out
of any feeling that the approach ig superior. My hope is that the alternative presentation
will itself be a contribution to a discussion of the theory.

One purpose for which the integral representation is especially useful is the
estimation of the order of magnitude of the statistical moments of the distribution of
dZ(%). It follows from (3) that any mean value of the form

dZ, dZ, dZ, ... (5)

- is zero unless it is possible to choose wave numbers ki, ka, ks, ..., one from each of the
volume elements in wave number space defining the dZ’s, such that

. kit ket ks +...=0. (6)
When this condition is satistied, the magnitude of the mean value depends on the
- ‘magnitedes of the wave-number volume elements, The simplest way to proceed, for
order-of-magnitude purposes, is to suppose that all the volume elements are of the
same small order V and that the geometry is not so special that the order of maghitude
of the mean value is reduced from the maximum value for such elements, One then
finds that :

dz,dzZ; = o(V), M
dZ; dZ dZ; = 0(V?) (8)

and that for higher moments it is the cumulants of the distribution that continue the
series. Thus '

le dZa d23 dZ.; _ dZ1 dZ2 : dz.?, dz.j. s 0 (VS) s (9)
- 42,42, dZ, 47, dZ; — dZ, 4Z; - 32y 0Zs 02— .. = 0(VY) (10)

ete.
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The resulty are equivalent to Kraicunan’s weak dependence hypothesis, that the
Fourier coefficients, when normalized with the root-mean-square magpitude V'/2, have
a distribution which trends, as V— 0, to one representing statistical independence for
digtinet wave numbers (i. e. wawe numbers k,, k» such that k; = =+ k»}. T am not convinced
that such a normalization ig of much significance for the odd-order moments, but there
are in any case significant relations here. In (9), for instance, if the four wave numbers are
such that

kl—i—kZ:O and k,g—-|-k4=0,
then o :

dZ1 dZ2 (123 dZ4 — dZ1 dZQ - ng dz; (11)

as V— 0. Results of a statigtically independent type, like (11), are implicit in any Fourier
analysis of homogeneous turbulence. But it is curious, as Kraicexan pointed out in his
earlier papers, that such results have not been emphasized more strongly in the literature.
Probably the reason is that, without further idecas, these results are complctely' umihdble
in the dynaminal theory (as, of course, one would expect since they are merely conse-
quences of homogeneity).

The formal way in which these results enter the dynamics is as follows. The
dynamical equation for a Fourier coefficient is

. C ki k- dZ
2 dzl=sf (ai»-i-——mfmdzz)kl-dz,.-vk% dz,
X, + Ky =k, kf

=P, f dZ., dZ, — vk dZ, (12)
+ =k

where P; is a third-order tensor depending only on k. A ‘ryplcal dynamical t*qud.tmn
for a mean value is therefore

3

dZ4 d.Z5 o P1f +k kl dZ2 dZR dZ4 d25 — Vk% le dZ4 dZ_:-, . (13)

where the time differentiation is partially with regpect to the time {; at which the
Fourier coefficient dZ, is taken. The integrand of the inertial interaction: integral is
then of different order of magnitude according as the wave numbers ky, kj, ky, ky are
or are not equal and opposite in pairs. Thus

f 0z, 07, 0Z; 02, = 2 0Z (— o) 0Z (&) - 07 (— ) 9Z (By)

+ f (4** cumulant of dZ,, dZ;, dZ,, dZ;), (14)
with k1 + ki + k3 = 0. The first term on the right is 0(V2); the second term, being an
integral over an integrand of 0 (V3), is 0 (V*); and, of course,

. le dZ4 dZsl.: 0(V2) .
So there are comparable contributions to the rate of change of 3 mean value from the
diserete wave numbers where the statistical conmection is strong and the totality of

remaining wave-numbers where the statistical connection is weak. Thig is ﬁhe semse in
which the weak dependence ‘ hypothesis’ is, alone, useless.

Nevertheless, most analytieal attempts to discuss turbulence dyriamicg have made
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much of the distinction between the two types of term in (14). The zero-4*-cumulant-
theories, for ingtance, neglect altogether the integral in (14); the corresponding form
of (13), together with the dynamical relation between 29 and 3™ order moments, forms
a closed system of equations for the problem. Now the non-integral terms in (14) arise
from particular terms in the original equation of motion for dZ, : out of the integration
over all wave numbers in the inertia integral one retains omnly those wave numbers
which appear in the other Fourier coefficients of the triple moment, '

=Py [4Z (— ki) 42 (—ks) + dZ (— ko) A2 (— k)] —k} 42, (19)
(with k1+k4+k5_0) |

In other Words, leaving agide any statistical dependence that may be induced by initial
conditions or driving forces, the zero-fourth-cumulant theory implies that the triple
moment is non-zero only on account of interaction between its own three wave-numbers.
Such a theory, which in some way singles out the interaction between the particular
wave pumbers of a mean value as being more important than other interactions, may
be termed a direct interaction theory *. Kratcanan’s theory is of this kind, and down
at this conceptnal level, therefore, it is closely related to zero-fourth-cumulant theories,
Indeed both theories tend to have the same very general properties and to stand or fall
by similar criteria. Neither theory seems to depend on the Reynolds naumber (in any
obvious way) for its success or otherwise. Both theories involve this dynamically very
artificial distinetion between direct and indirect interaction; the only real distinction
between such interactions is the order-of-magnitude one arising from the kinematices, and

this has already been seen to be W1th0nt gignificance as for as the intrinsic mechanies
of turbulence is concerned.

However, if one does accept the idea that there is something dynamically worthwile
in the distinction between direct and indirect interaction, then there iy more than one
way of proceeding. The simplest representation of the idea is the zero-fourth-cumnlant
one represented by (15), and this is the equation that Hrrsexeere took to solve for dZ,
for the purpose of substituting in dZ, dZ,dZs The fact that thé form of the equation
varies according to the purpese for which dZ, is needed (i e, varying dZ,, dZ;) is merely
a reflection of the fact that we are not dealing with exact properties of homogeneous
turbulence. The point is not as serious as it may seem at first sight because the part
that varies accordmg to purpose is small compared with the other terms in the equation.
Thus

[+,

ot

dZ}, and Vk%- dZ;

~ are hoth 0(V'%), whereas dZ, dZ; is 0(V). What is serious is that the dominant terms
" in the equation represent pure viscous decay, so that if the Reynolds number is not small

the resnlting computation of the triple moment must be hopelessly in error.

The correction of this particular defect is the most interesting part of KraicENan’s
theory and what makes it a conceptually superior exploitation of the motion of dominant
direct interaction. The idea is not to describe the process that leads io the establishment
of triple moments but to describe the process that does not lead to triple moments. Thus,

*1 am here using the térm ¢ direct interaction® in a more general sense than Kraicunan does.
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in his direct interaction hypothesis, KraicanaN asserts that a hypothetical process
{distinguished by primed Fourier coefficients) which satisfies the equation

° 4z =P, f  dZyAZi— vk dZ; |
(o431 X, + k=% ‘_ ‘
— Py [dZ (— k) 42’ (— ks) + AZ' (— k) 42 (— k)] (16)

i.e., the exact equation less the direct interaction between k,, ki, k; does not lead to
the establishment of the triple moment dz] dZ; dZ; . Thus the triple moment in the
actual process envisaged in the XrarcHNAN theory arises only through' replacement of
the direct interaction terms in (16). In view of the non-linearity of the governing equation
this inverse statemeént of the direct interaction conecept is not equivalent to that used
in the zero-fourth-cumulant theories. The dominant terms in (16) are those in the exact
Naviek-SToRES equation, and the response of the system to the small direct interaction
terms is modulated by every Fourizr coefflclent in the representation - not just the
linear response described by (15). ‘

In the mean-value equations (13 and (14) this modulation of the direct interaction
ig included in the fourth-cumulant integral, and KrAICHNAN's theory therefore partially
takes into account this term. The fourth cumulant that is assumed to be zero in the
theory is the one referring to the hypothetical process described by (16) — as may be
seen by multiplying that equation by dZ; dZf and averaging. Thus the infinitesimal
difference between the hypothetical and actnal processes.

AZ1 = d.zl‘-—-—dz; = O(V)
gives rise not only to a iriple moment but also to a fourth cumulant. At first s1ght one
might think that this represents some fundamental improvement over the approximation
of the zero-fourth-cumulant theories. But T think that this cannot really be so. The
gituation is symbolically represented by the quadratic expression
(A+BP =A%+ 2AB 4 B?

in which A and B stand (loosely) for direct and indirect interaction, respectively. The
zero-fourth-cumulant theories assert that we should retain -only ferms containing A
only ; KracENAN’S theory asserts that we should neglect only terms containing B only.
If there were asymptotic conditions under which either theory were valid (B— 0) then
the other wounld be automatically valid. Thus the difference between the theories is
essentially a measure of the error of them both.

Finally, it may be useful to add a word about the value of attempting expansions
of which the theories so far discussed represent the leading term. Successive terms of
these expansions may, for the present purpose, be regarded as taking into account
guceessively more complicated indireet inferactions. |

For this, the significance of the leading term is all important. If there were some
dynamical conditions for which the direct interaction hypothesis were asymptotically
exact, then the expansion would bhe an asymptotic expansion about these conditions
with an eagily understandable gignificance. But I have been emphasising that no such
conditions exist and that subsequent terms in the expansion are of the same order a8 the
leading term. The practical utility of the expansion (or rather the first few terms of it —
which would be all that would be reasonable to compute) then depends very much on
the ratio of direet inieractions to indirect interactions. If this is 0(1) it might be

4
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reasonable to expeect useful accuracy from a few terms. But if this ratio ig very gmall
* then the expausion is not of much interest. .

Unfortunately, there seems to be some suggestion from the observational evidence
that indirect interactions are actually dominant for those components of turbulence
that are least correlated with the generating mechanism, If one takes the deviation of

the }_‘latness factor
-anu 4
ox”

anu Y2 2
1T .
from three as an order-of-magnitnde measure of the importance of indirect interactions,
then the fact that this increases with both »n and Reynolds number does seem to suggest
dominant indirect interactions. If this is right, the futility of attempting an expansion

whose leading term represents direct interaction is obvious, and I do not hold out much
hope for useful results from the theory. B
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THE UNIVERSAL SMALL-SCALE SPECTRUM
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SOMMAIRE

Des mesures récentes de GRANT, STEWART et MoOLLIET apportent un sontien & I'idée d'une
forme universelle du spectre de la turbulence pour la partie i petite échelle, aux grands
nombres de REYNOLDS, mais les résultats des expériences du Jet Propulsion Laboratory sont
différents, d'une maniére significative.

Diverses théories de la fonction de transfert aux grands nombres d’ondes sont énumérées,
et on trouve que leurs prévisions différent peu les unes des autres. La comparaison avec les
mesures de GRANT et coauteurs montre une bonne concordance.

SUMMARY

Recent measurements by GRANT, STEWART & MoLLier give support for the idea of a
universal form for the small scale end of the spectrum of turbulence at high REynoLDs

numbers, but the results of experiments at the Jet Propulsion Laboratory are significantly
different.

Various theories for the transfer function at high wave numbers are listed, and it is
found that their predictions differ little from each other. Comparison with the measurements
by GrANT el al. shows fair agreement.

Introduction

When I was invited to present this paper, it was hoped that it would be possible
to make a critical assessment of recent experiments which bear on the KoLMOGOROFF
theory of the small scale end of the spectrum, Two principal series of measurements
have been made, those of Grant, STEWART and MoLLier in a tidal current in the ocean
and those at the Jet Propulsion Laboratory in grid turbulence at rather high Reynolds
numbers. Unfortunately the results of the latter did not become available until the
Colloquium was under way, when they were found to disagree rather strongly with
those of GranT et al. The nature of this disagreement will be described below, but it is
too early to form any judgement on the accuracy of the experiments. #
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'Concept of Kolmogoroff's 'theory

The basm idea of the theory iy that turbulent energy is generated in some certain
ratige of length scale and then passed to smaller and smaller scales by a cascade process
in which the steps are not too lage. Thus the smaller scales are only indirectly coupled
to the larger ones; and, outside the range where creation is taking place, the emergy
transfer across any wave-number completely determines the statistical properties of the
. motion at smaller scales. Thus if we write E(¥) for the spectrum¥*, at high Reynolds
numbers where the scales of creation and dissipation are well separated (and, if the

. dinE o . .
turbulence is decaying _dt— is small compared with a charateristic frequency of

the eddies on that seale), ontside the range of scales where creation is important,
E=E(Fev) | o ;
=M kS F (k) -
where k= el/tv—3%4 on dimensional grounds. -‘

The inertial sub-rénge

If one assumes further, as seems virtumally certain, that viscosity does not enter
into the transfer process at scales where the dissipation is negligible, then one would
expect that in the range between the scales of creation and dissipition Fy =1, and so

. B = ye2/8 03 (2)

SrewarT & Towsenp (1951) have diseussed the necessary conditions for the inertial
range to be extensive in grid turbulence and find that a value of Ry of at least 10° is
required, This is not easily attained in the laboratory (though measurements .at the
Jet Propulsion Laboratory which are not yet available come near it). For flows in
channels we may assume that the criterion is Lk, 10. This implies La’/v»>10* This is

more easily attained, but even g0 natural turbulence provides much the most readily
available source. '

Experiments of Grant, Stewart & Molliet (1962)

These observations, of which a full account is in eourse of pubhcatmn **, provide
what is probably by far the most convincing demonstration of the correctness of the
KormoGgorory theory that has yet been made. The measurements were made using hot
film equipment in a tidal channel where the Reynolds number based on depth and mean
velocity took values up to 3 X108, They found that by plotting all their spectra in the
correct dimensionless manner they could all be superposéd to within the experimental
accuracy; the power law in the inertial range was shown to lie within the range 1.66
to 1.75; and the value of v was found 1o he 1.34 with a' standard error of the mean

* A number of detailed definitions are given in the Appendix.

** A number of diagrams of the data were shown on slides at the: Colloqumm by Prof,
R. W. STEWART,

]
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_of 0.05. The values of ¢ covered by the meagurements range from 0.002 to 1. A comparison

‘ : du : ‘
has been made between the measured spectra of (wd—a;—) and those found by earlier

workers in pipes and channels, and agreement is found to he quite as good as would
be expected in view of the limited Reynolds number of the earlier experiments.

The practical importance of these observations is enormous since they enable the
whole of the high frequency end of the spectrum in many natural situsztions to be
determined from measurements at one frequency which are technically simple.

Experiments at Jet Propulsion Laboratoiy

These were made behind a grid in a pressurised wind-tunnel with values of Ry up
to 2.4 X 10°% It is not possible to make any assessment of them until a full account is
published, but the results presented during the Colloquinm * revealed several unexpected
features : o

(1) They indicate a value for ¢ of abont 3.2,

(ii) Measurements were made of the ecross component of the turbulence (which has
not yet been done systematically by Grant e al.) which show a marked lack of isotropy
which depends very little on. frequency. At the highest measured frequencies the
spectrem of one eross component of velocity was a factor of about 1.7 lower than would
be expected from the spectram of « assuming isotropy. ' ‘

If these conclusions are confirmed in the future, it is clear that the whole basis of
the Kolmogoroff theory will be suspect and a radical revigion of existing ideas in the
mechanism of the transfer of turbulént energy through the spectrum will be called for.

‘Other estimates of v

In Aﬁpendix various well known formulae of ié.otropic turbulence are listed. From
these the relation of ~r to the so-called structure functions and to the skewness of %
may"be geen. The present value of v indicates a value of — 0.34 = 0.015 for the skewness of
—.Z‘%. This is in remarkably gobd agreement with the values rﬁeasured by Twnsend and

Stewart (Barcmzror, 1933, p. 118) at much lower Reynolds numbers.

Atmospheric measuremenis

Spectra following the — 5/3 power law have been found quite commonly in the
atmosphere, but no reliable measurements of ¥ are available. It is however interesting
to note that here, as in the ocean, the universal spectrum covers a vast range of scale,
For example, Zsrozex and Rinano (1960) give a spectrum measured at a height of
800 m with U = 26 ms-1. If one uses the present value of vy, one finds ¢ = 6.6 c.g=s.

* Also on slides, by Dr. A. KisTrER.
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and g0 k, = 6.7 cm—% The measured 5/3 power law extends to scales of the order
of 500 m and so the whole of the spectrum from this scale downwarde could now be
determined from measurements at one frequency.

Theories of the spectral form in the viscous sub-range

A brief sommary of the beiter known theories which predict the form of the
gpectrum in the viscous range will now be given. None of these theories can be expected
to apply when k is mnch greater than k, and viscosity is dominant, but they are all
reasonably successful near the end of the — 3/3 law range and have no ad]ustable
constants whatsoever.

Let us introduce the following djmensionless variables : k = , & = vK~22 Fy (k),

8

B .
8 — —— where 8 (k) is the rate at which energy is being transferred across wave-
e ‘

é

number k. Also, for convenience write X = x*/3, and Y — «®/3

The equation for the energy balance now takes the form

o=t 2 ®)
T2 dx _ :

and one additional relation between the variables is needed to form a complete theory.
The form of the relation depends on the physical content of the theory. We shall now
briefly review the better know theories. First note the limiting conditions

(1) ininertial sub-range : X =0;Y=1;Z =1,and

(ii) at a large finite value of k, or as K tends to infinity, z dﬂd '€ must fall to
zero together.

Kovasnay’s theory

The rate of decay of turbulence is usually well represented by an expression of
r3/2 )
"the form

where ¢ is a typical velocity and L a length scale. The idea behind

Kovasnay’s theory is that this formula applies to the transfer down ‘the speetrum on
any scale, so ' ' :

B ak (RE)2 (4)
An equivalent derivation of this formula can be made from the assumption that 8
depends on the local values of E (in k-space) but not on the viscosity; so that the
viscosity doeg not influence the transfer process directly at all. This may well be true
near k., bit does not seem very plaunsible at much higher wavenumbers .

The results of this and the other theories are summarized in Table 1. It will be
seen that Kovasnay’s theory leads to a sharp cut off in the spectrum at a finite value of &.
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Obukhov’s theory

This suggests that the rate of transfer should be thaught of as a Reynolds stress
multiplied by a rate of strain due to the action of larger scales. Thiz latter is taken

to be equal to its rmsg. value,
& 112
[2 J B ®) dk’] -
@

and, in the original form of the theory, the Reynoldb stress was taken as proportional
to the intensity of all smaller eddies

f B () dk
&
» . k TR 12 .
Sa j E d¥ [2 f k’2Edk’] (5)
P Jo

T=F f kote a1 —3p (6)

Thus

This expression leads to a physically impossible form for the spectrum since ¥ falls to
wero at a value of k where £ is finite.

Modification of Obukhov’s theory

The difficulty with this theory can be removed if one assumes that the Reynolds
stress is produced only by eddies in the neighbourhood of % and not by all eddies
equally, and so take it proportional to kE. Thig is plausible since the various scales
of smaller eddies cannot be highly correlated one with another, but it inevitably brings
the theory into close agreement with Kovasnay’s since the integral for the rate of
strain receives its greatest contribution from eddles in the neighbourhood of x and the
theory is almost a loeal one. -

This time we obtain - :
Z=FEA—2)1 . (7}

Heisenberg’s theory
This starts from the observation that

k
a':.:2vf ¥2BEdk -+ 8
. L1}

50 that if the transfer is thou‘g}it to be due to the small eddies acting on the large ones
as an eddy viscosity, one might expect 8 to be of the form

5 ‘
N (k}f 22 E ar
o :
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where N (k) is an eddy viscosity to be formed out of the properties of the small eddies.
Assuming it to be an integral, dimensional considerations suggest

N(k)=H f 1 -802 B2 qi’
k

Thus we obtain

¥ = .
I“E:H‘[; k-7 g1t dg - (8)
In this theory as in the earlier ones the arbitrary constant can be expressed in terms
of y and when this is known from observations the theory becomes complete.

The predictions of the theories discussed above differ very little from each other
in the vicinity of k,, and are in moderate agreement with the chservations. TMeisenberg’s
theory in faet fits the observations best, but one may doubt whether this is significant,
Tt is interesting to note that present value of y leads to a value of H of (.57 which may
be compared with 0.45 = 0.05 estimated by Proudman from consideration of the whole
spectrum (BarcurLoRr, 1953, p. 167). -

Townsend’s theory

At values of k much greater than %, it is unlikely that any theories of the form
just discussed will apply. It seems likely that a model on the lines of that of stretching
vortex sheets put forward by Townsend is needed. Unfortunately, as pointed out by
Batchelor in a preceding paper at this colloguium, this theory is not at present satis-
factory since it leads to an infinite value for the meuan-square vorticity.
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APPENDIX

. DEFINITIONS AND USEFUL FORMULAE

Normalisation of spectro
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. Characteristic quantities for small aceles
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dx dav 38
1 - _=__T
dY dX 2

or X~
Kolmogoroff relations _
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DISCUSSION DE LA SECTION:
TRANSFERT D’ENERGIE EN TURBULENCE HOMOGENE

G K. BA’I‘GHI]LOR

Referring to BATCHELOR'S suggestion about direct numerical integration .of the
(unaveraged) Navier-8T0RES equation with respeet to time, with a random initial distri-
bution of velovity, CormsiN said that, according to some estimates he had made
(Americen Scientist, vol. 49, 1960, page 300), the memory required of a computing
machine for guch an integration is enormous and heyond the reach of existing machines.
Taxror and Lizpymaxx were of the opinicn that some uscful results might be computable
for turbulence of moderate ReynNorps number, although it was generally agreed that
a calenlation for high Reyworps number which revealed propertles of the small-scale
components would be more valuable.

* At geveral points in the discussion, the need for more measurements of the kinetic
energy spectrum and other guantities in turbulence at very high Reyxonps number was
emphasized. The available theories concerning the small-scale components of homo-
geneous turbulence are apparently applicable only at Reywonps numbers well above
those at which most of the measurements have been made. KovaszNay suggested that
the time hag come for the investment of a large amount of money in some experimental

facility which would make possible measurements of the small-scale components at
rea]ly high ReyxorLps numbers.

With regard to the differences between the data on the spectrum of the #-component
and that of the v-component obtained by KisrLer at J. P, L., Laurer believed that they
could not be explained by the fact that the veloeity components % and v were measured
with different instruments, viz. the single hot wire and the X-type hot wires. The people
at J.P.L. had been concerned . about this discrepancy, but could not detect any extra-
neous probe effects. In particular they had compared spectrum measurements with the
gingle and X-wire probes in the plane-wave sound field of a turbulent boundary layer
in which the u-fluctuations differ only by a constant from those of v. The normalized
spectrum distributions obtained by the two probes were identical, LAvrFEr also mentioned
that Kvieeaxorr, working with a turbulent boundary layer, and he, working with the
central region of turbulent pipe flow, had obtained similar forms of the v-spectra.

Bercmov described some experimental techniques which may be useful in an inves-
tigation of the intermittency of high-order spatial derivatives of the velocity. From a
given signal f(#), one can determine both the power spectrum of f, to be denoted by

¢(w), and the power spectrum of f%, to be denoted by ¥(w). It the FourmEr components
of j(¢) have no phase relations, the ratio n defined as :
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¥ (w)
/L w‘?(k) ¢(k -+ w)dk

is equal to unity, Bercmov had found that in grid turbulence, and with the acceleration

n(0) =

Du
?t- (where « = velocity) as the signal f, n =1 for values of & up to the KOLMOGOROFF

scale and rises to 2 for large values of o. It would be useful to repeat these measurements
at larger ReyNorps numbers.

This effect of phase relations is closely related to the existence of spikes in the distri-
Du
bution of o7 Bercuov believed it would be interesting to study the size and shape

of the region of space corresponding fo a single spike. This could perhaps be done with
several hot-wires, each rignal being differentiated and passed through an electronic
gate which delivers a signal of magnitude unity during a spike and zero otherwise. The
gated signals could be applied to a coincidence counter, giving a coincidence function,
instead of the usual correlation function.

KisTLER reported that some recent measurements at J.P.L. of the decay of grid
turbulence seem to show a dependence of the decay law in the region near the grid

(T between 20 and 100) on the shape of the turbu]ence-producing elements, A grid

was constructed of plastic spheres supported in a square array by a mesh of fine wires.

Measurements of the decay of uZ or v* showed that (1) the decay law for either 12 or o&
vy
could be closely represented by wEa T , and (2) the variation of the turbulent

microscale as determined from the spectra was A% — 7.5 vi. This decay law is the same
28 would b2 expected in the wake of an isolated sphere after the wake attains some sort
of an equilibrium structure. Krstrzr pointed out that the usual initial period result,

u?a (Y) , obtained behind -essentially two—dimensional turbulence-producing
elements is the gsame as the Iaw of development of the wake of an isolated rod.

Usk=ol sa,ld that his measurements in the tarbulence behind the usual biplane

MU
grids at —— = 2,6 X 10* showed that #% = %% = 0.7 4 and that one-dimensional spectra

* of »* and »02 do not satisfy the relation imposed by the requirement of isotropy. These
unequal tarbulent intensities imply that. there is less vorticity along the mean flow
than across it. Immediately behind the grid there is negligible vorticity along the mean
flow and apparently the mixing further downstream is not strong enough to give
complete isotropy. Following this idea, a grid of circular rods which make equal angles
with all the axes wasy constructed. The turbulence produced by this grid was not
noticeably more isotropic than that produced by usual grids. The grid rods were
roughened to induce a turbulent boundary layer on them. This did not make the
turbulence more nearly isotropic. The vorticity along the mean flow may also be increased
by contracting the flow behind the grid. It was possible to make 4 — 2 — 1% but the
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gpectra of #% and v® were not then related as in the jsotropic case. Furthemore, in the
uniform section behind the contraction 4? began to exceed +*.

Useroz had found no finite range of wave-numbers over which the measured energy
transfer is zero or small, and therefore no KOLMOGOROFF inertial subrange, in the

UM .
spectrum of grid-generated turbulence at —— = 2.6 )X 10°, Kistrer confirmed (see the
v

talk by Briisox) that anisotropy in grid-generated turbulence seems to persist at high
. M :
wave-numbers at —— =— 2.4 % 10% and Usmro:r concluded that an inertial subrange

does not exist even ?{t this high RexwoLps number, In view of all this, he believed that
the fact that the spectra of grid turbulence and shear-flow turbulence agree at high
wave-numbers when plotted in terms of KormocororF parameters should be interpreted
with cauntion.

On the theoretical side, it was reported that O'BriEN (J. Fluid Mech., 12, 1962 —in
the press) had used the zero fourth-order cumulant assumption as a means of calculating
the development of the spectrum of a convected scalar quantity 6. The initial spectra of 9
and of kinétic energy were so chosen as to bave maxima near wave-number ko The
fourth-order cumnlants of the joint distributions of & and the velocity were put equal
to zere in the familiar way, and a forward integration of the equations with respect
to time was carried out numerically, It was found that the spectrum of 8 developed a
local minimum, and became negative af a wave-number near k, after a time of order

ko ' .

It was also reported at the Colloquinm that Golitsyn (Prik. Mat. i Mech., vol. 24,
1960) had calculated the form of the energy spectrum at very large wavenumbers, on
the assumption that the skewness factor of the difference between the velocities at two
points is constant for all distances between the points small compared with the size
of the energy-containing eddies; he found that after 4 certain time the spectral demsity
becomes negative for some wave-numbers. It wag remarked that this is effectively another
hypothesis about the transfer of energy and that, as in the cage of many of the earlier
transfer hypotheses described in Errison’s talk, the effect of viscosity does not have a
clear physical basis.

Another recent attempt to determine theoretically the form of the energy spectrum
at wavenumbers large compared with the dissipation wave-number (E. A. Noviov, Dok.
Aked. Nauk. 8.8.8.R., vol. 139, 1961, p. 331) was reported. The method was to use the
known asgymptotic behaviour of a single Fourier component of the velocity disturbance
to a persistent uniform straining motion, in the manner of an earlier calenlation of
the spectrum of a convected scalar quantity (G. K. BarcasLok, J. Fluid Mech., vol. 5,
1959, p. 113). It appeared, after some discussion at the Colloguinm, that the method
cannot be used (at any rate, not without modification) for the energy spectrum since the
total energy of the disturbance fo a mniform straining motion is ultimately dominated
by Fourier components which are slow to take up their asymptotic orientation; and
the total disturbance energy actually tends ot infinity if the straining motion persists,
as already shown by Pmarson (J. Fluid. Mech., vol. 5, 1959, p. 274). The way in which
the method should be modified to take account of changes in the straining motion, and
thereby to avoid the indefinite growth of the disturbance energy, remains to be found.
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Kratcuanan made the following remark about this work by Novikov and the earlier
related theory of Towwsesp (Proe. Roy. Soe., 4, vol. 208, 1951, p. 534). Both of these
investigations postulate an energy-transfer mechanism such that the energy.dynamicy
of thiz very high wavenumber range is determined by the straining action of lower
wave-numbers. The mechanism involves principally the interaction of the wave-numbers

¥ _ _ _ o
vorticity and therefore exert most of the straining action. Thus they postulate a transfer
process which deépends on non-loeal interactions in wavenumber spaee, in contrast to
the local cascade process usually assumed in. the inertial range. -

Several years ago, he (Krarcmnan) had investigated the energy-transfer in the far-
dissipation range on the basis of the so-called direct-interaction approximation. The
result (J. Fluid Mech., vol. 5, 1939, p, 497) for the gpeclrum had the form

E(k)ak:'*"exp(— Z ), - (1)
: .

where the wave-number %k, is a parameter determined by the theory. It appeared that
the non-local interactions appealed to in Towwssmnn’s theory played a negligible role
- iIn the emergy transfer. Their contribution was completely overshadowed by that of
interactions among triads of Fourmr modes all three of whose wave-numbers had the
same order of magnitude. In other words, it was found that the loeal cascade process
characteristic of the inertial range continued to be dominant in the far-dissipation
range. ‘ - :

For sufficiently high %, the spectrum (1) is very much larger in magnitnde than the
very rapidly decreasing spectrum given by Towsenp's theory. This is consistent with the
conclusion that the interactions retained in the latter theory represent only a negligible
part of the total energy-transfer for such k.

- g \1/1
» ks [: (—3) ] with wave-numbers of order k;; the latter contain most of the

There is reason to believe, according to Kratcmnay, that (1), in contrast to the
inertial-range predietions of the direct-interaction approximation, is actually an asymp-
totically exact result for the far-dissipation range. The errors produced hy the direet-
interaction approximation in the inertial range may be very crudely described as due
to an Imaccurate treatment of the relaxation effects, upon triple correlations, of an
effective dynamical viscosity. In the far-dissipation range, these errors appear to be
-negligible becanse of the dominance of actual viscosity over the effective dynamical
viseosity. _ _

If (1) is correct, the ineffectiveness of the non-local interactions retained in
TowwsEND’s theory may be given a simple qualitative interpretation which is based
on the nonlinearity of the dynamical proeess. The elementary dynamical interactions
‘in the Foumier representation are among ¢riads of modes. Tn order for there to be
a transfer of encrgy into a mode k due to interaction with modes k' and k", both of the
Fourigr amplitudes u(k’) and u(k”) must be non-zero. In general, the rate of energy
transfer depends on both E(K) and E(k”). Now suppose k> k, and &' ~ k,. In order
for the triad of modes to interact, it must be possible to form a triangle from their
wave-numbers. Hence, % ~ k. The essential point now is that the spectrum falls off
80 rapidly in the far-dissipation range that E(&”) is very small and suppresses strongly
the energy-transfer associated with this non-loeal interaction. ‘





