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- . SOMMAIRE

A) Les dépendances et les relations enfre les hypothéses d’homogénéité, isotropie, sta-
tionnarité et incompressibilité sont examinées du point de vue de leurs correspondances dans
les représentations de Lagrange et d'Euler. e c '

On trouve que, dans un fluide incompressible, T'isotropie et Phomogénéité dans la repré-
sentation d’Euler entrainent la propriété correspondante dans celle de Lagrange; que Yhomo-
géndité enlérienne implique Pégalité des mesures des quantiiés eulériennes et lagrangiennes
relatives 4 nn point unique; et que I'homogénéité et Ia stationnarité eulérienne entrainent la
stattonnarité des fonctions statistiques lagrangiennes dépendant d’un seul point de I'espace.

Il est & noter que les fonctions lagrangiennes dépendant de plus d’un point de Pespace
ne peuvent étre stationnaires, et que les liaisons énumérées ci-dessus, ne sont pas néces-
sairement réciproques. ‘ : : _— -

Il est d’autre part mentionné la nécessité de faire des hypothéses dynamiquemeent
contradictoirs pour le domaine d’Euler, afin d’obtenir la stationnarité pour les fonctions
statistiques lagrangiennes en un point, Le rdle important de Phypothése d’incompressibilite
est discuté, : ‘ ' L '

B) Le probléme concernant 'obtention des statistiques de¢ trajectoires de points est
examifié. ‘ o '

Pour éclairer la question, nous décrirons les problémes de l’obtention du champ des
vitesses ! ‘ ‘ : .

—suivant un chemin prescrit analytiquement (eulérien);

— suivant un chemin aléatoire, mais statistiquement indépendant;

— suivant un chemin statistiquement dépendant (lagrangien).

Une techmique est décrite commengant par la formule de Rice-Kac, pour la probabilité
d’annulafion d’une fonction aléatoire, pour obtenir la probabilité fonetionnelle d’une trajec-
toire de point, durant un intervale de temps. : '

La simplification qui consiste 4 admettre Pincompressibilité est discutée. _—

L'attention est attirée sur le probléme d’intégration de la probabilité fonctionnelle (dans
I'espace des fonctions) de facon & donner les densités usuelles. : ¥
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SUMMARY

A) The implications of, and relationships between, assumptions of homogeneity, isotropy,
stationarity and incompressibility are examined for corresponding Lagrangian and Eulerian
flelds. It is found that in an incompressible fluid, isotropy and homogeneity of the Eulerian
ficld imply the corresponding property of the Lagrangian field; that homogeneity of the
Eulerian field implies equality of averages of Eulerian and Lagrangian quantities dependent
on a single point; and that homogeneity and stationarity of the Eulerian field imply statio-
narity of Lagrangian statistical functions dependent on a single space point. It is noted that
Lagrangian functions dependent on more than one space point.cannot be stationary and that
the implications given above do not necessarily work the other way. The necessity is
mentioned of making dynamically inconsistent assumptions for the Eulerian field in order
to obtain stationarity for Lagrangian one-point statistical functions. The strong role of the
assumption of incompressibility is discussed. ‘ ‘

B} The problem of oblaining the statistics of point trajectories is examined. For illustra-
tive purposes, the problems are described of obtaining the velocity field : on an analytically
prescribed path (Eulerian); on a random, but statistically independent path; on a-statistically
dependent path (Lagrangian). A technique is described, beginning from the Rrce-Kac formula
for the probability of occurrence of zeros of a random function, for obtaining the functional
probability of a point trajectory during a time interval. The simplification of assuming incom-
pressibility is discussed. Attention is given to the problem of integrating the functional proba-
bility (in function space) so as to give ordinary densities, :

INTRODUCTION

Since the pioneering paper of G, I, Tavror in 1921 {1]* turbulent diffusion has been

approached largely by expressing quantities of interest in terms of Lagrangian statistical
functions. about which simplifying assumptions are made with only limited reference
to the Eulerian field: Generally speaking, with the exception of small time lag expan-
sions [2], and the work on relative diffusion making nse of the Kormocororr theory [3],
the diffusion work has procceded parallel to and independently of the work on the
- Eulerian field. Even the phenomenological descriptions which use the empirical evidence
for a gaussian distribution of displacement of points tagged at a fixed initial location [4]
leave open the question of the quantitative description of the diffusion coefficient. Some
of the assumptions made in working with Lagrangian quantities are so natural as to
appear obvious, and are sometimes made without the realization that they are assamp-
‘tions (e.g. — the assumption that statistical functions at a material point are equal
to the corresponding Eulerian functions — [5]). In some cases apparently impermissible
extensions of the assumptions are unwittingly made (e. g. — that the two-point Lagran-
gian correlation temsor is stationary — [6]). Generally speaking, direct attacks on ‘the
‘general problems of relating Lagrangian and Eulerian quantities have been diffienlt
to find. ‘

In this paper we will try to give a general picturé of the current state of knowledge
about these problems. We have purposely omitied reference either to the various pheno-
menological descriptions, or to the descriptions which depend on the simplifications

* Numbers in 'squafe brackets refer to bibliegraphy at end of papér.
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arising from a particular dynamical theory. We wish to limit ourselves rather to the
exact mathematical inferences which can be drawn relating the Eulerian and Lagrangian
fields. We are going to split the disenssion in a way which seems natural, into a discussion
of the relationship of the various assumptions made regarding the Eulerian and Lagran-
gian fields, and a discussion of the general problem of relating Lagrangian and Eulerian
statistical functions. Bridging the gap between the two sections is a theorem relating
Lagrangian and Eulerisn statistical functions depending on a single gpace point [7].
A technique used in the first-section is that of formal series expansion, and this theorem
is used to evaluate the coefficients. '

1. — Homogeneity, isotropy, stationarity and incompressibility

Formally, the Lagrangian velocity field can be expanded in a power series in time :

.

: - ﬂ . :
v =ulrenn= Y S Zoven| v S
=10
where ' P '
r(a it} = a+[ v(a, 1) dv (2)
L3 o :
and the coefficients are all Eulerian quantities :
" { 2 )”
— t = - £t} —— t t=10 3
O l » (at tu 0 ) wEmn |20 )

Any statistical function of the Lagrangian field can therefore be represented formally
as & power series in time with Eulerian coefficients. We can conclude immediately that

Eulerian homogencity => Tagrangian homogeﬂéi_ty ' (4)
Eulerian isotropy - => Lagrangian isotropy (5)
Thig technique could be applied formally in the reverse direction : that is, the Eulerian

Field ecould be expressed as a formal power series in time, using the fact that the present
Eulerian field is the Lagrangian field for some set of (time dependent) past locations :

u (x,t) = v(a(x1) 1) ) (6)
However, the coefficients in such a series are not pure Lagrangian quantities, since they
involve the strain tensor P (a,f)/d¢; in Lagrangian co-ordinates, and consequently
are difficult to interpret. Tentatively we can conciude that if statistical functions
involving the Lagrangian field end the strain field are homogeneous, then the Eulerian
field is homogenous, with a gimilar "conclusion mutatis mutandis for isotropy. This
technique, of course, cannot handle cases in which the Lagrangian field may become
asymptotically homogeneous, such as fully developed turbulent pipe flow. It should be
noted that so far we have not used the restriction of incompressibility, though we should
probably require the flow to be everywhere subsonic. '

Tn order to carry these relations further, it is necessary to use a theorem of
Lumrey [7] (similar to Liouvitre’s theorem — see [8], p. 16). Let us imagine first a finite
region B of turbulent fluid bounded by a solid surface on which the velocity venishes;
then, if we integrate any function of Lagrangian particle position [e.g. P (r(a,%),)] »



20

then, if we integrate any function of Lagrangian particle position [e.g. u? (x(a,t), )]
over this volume, we can make a .change to Eulerian variables, including the density
ration as the Jacobian —

fF(r(at) t)da:f F(xf)&dx (7)-
Ja  EWREARE L TR S am 1),0)

where a(x,?) is the location at t =0 of a point which at { finds itself at x, For an
incompressible fluid, the density ratio Is unity, and taking ensemble averages we have

f Fir(at),t) da— f; F(x 1) dx (8

5 :
If the Eulerian field were homogencous (impossible because of the solid wall) then from

what we have done above, the Lagrangian field would be also, and the two functions
could be removed from the integrals —

F(r(ai),i)=FXx1 (9)

‘FIGURE 1
Motion of an initially spherical surface in turbulent fluid.

The unrealistic restrietion to a solid boundary can easily be removed. An exact
proof is not difficult, and is given with slightly greater gemerality in [7]; for our
purposes, however, an heuristic argument will suffice. Buppose our space is filled with
turbulent fluid in homogeneous motion. Let R be any region. Then the second integral,
if the fluid is incompressible, will be over the same volume, but over a new region
(say R’) since the boundaries will have moved (see Figure 1). We can estimate how
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far they will have moved, however — if %’ is the r.m.s. fluctnating veloeity, then i
is an estimate of the extent of the motion, and w#S(R), where S(R) is the surface of
the region, is an estimate of the volume by which the regions fail to overlap. If we divide
by the volume V{R), and take the integrals both over the original region R the difference
is estimated by ‘ S

, S(E®) — |
Wt B 05, 1) (10)

This can be made as small as we like at fixed £ by taking the region large enough. Instead
of (8) we have ' o .

lim ; BF(r(a, t),t)da= lim ——1——f F(x, t)dx : (8a)
V(&) - = Y(R) R V(B) » = V(R)o/ & :

Again, Eulerian homogeneity (implying Lagrangian homogeneity) implies (9). Note that

incompressibility seems to be essential, since otherwise we are left with a density ratio

in the averages which ig neither an Eulerian nor a Lagrangian quantity. If incompressi-

bility is not assumed, and homogeneity permits removal of the averages from ‘the space

average, it is difficult even to show that V=0 without assuming isotropy, since

Y=u-?’ : o)
0o . . : _
Using this theorem, if we let

F(x,t) = ™™ &0 .

(the average of this will be just the characteristic function) we find that, for a homo-
geneous incompressible field, the entire distribution of Laegrangian velocity at any instant
is identical with the Emlerian one. Note, however, that we cannot apply our theorem
to an F that is dependent on more than a single Lagrangian point or time, so that the
joint distributions at two points or times must differ. This same situation will arise
again below, in the discussion of stationarity. ' |

We can apply this theorem directly to the Lagrangian auto-correlation,

v (2, 8) vy (8, t-+ <) =t (x (8, £), 1) w4 (¥ (8,8 + <), T + %) (12)
This can be expanded formally in a power series in ©— .

(o, ) vy (3, t 1) = (v (a, 1), 0) wy(r(a,t),8)

| 2 -
+ T (1‘ (a’ t)’ t) Uy,% (X, t) Uz (xs t) + —_— Uy (X, t}
ot _ o= (8, 1) .
+ .. B ' . - (13)
and all coefficient are functions only of a single Lagrangian point, Qur theorem thus

applies, and if we can assume Eulerian homogeneity, they can be replaced by the
corresponding Eulerian averages ‘ o

ve (@, ) v;(a, ¢ 4 ) =W (X, 7) 0y (X, )

‘ ‘+‘ T U (X, t) {u:l,k (X’ t) U (X, t)"" %'u’i (x: t) }
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Finally, the coefficients will be independent of time only if the Eulerian field is statio-
nary. Thus, for the Lagrangian suto-correlation to be stationary, it seems as though we
must assume that the Fulerian field is both stationary and homogeneows. There are -
two pointg to be noted : first, that this set of assumptions is,. for an isotropic field,
dynamically impossible — stationarity of the Lagrangian auto-correlation ig therefore

an approximation, and it is necegsary to inquire, in a particular situation, to what extent
the approximation is justified.

The second point is that even if the Lagrangian time-correlation could be regarded
as stationary, it seems as though the Lagrangian space-time correlation could never be
stationary. We cannot apply our theorem to this cage, 80 we must reason rather heuris-
tically. Consider the correlution in which the times are the same

_ v (a, t) v; (a, t) . . (15)
Consider two material points whose initial separation is, say, of the order of the Koro-
GOROFF microscale. For small time, the correlation will be excellent; if + = j, we expect
to be able to make it as close to unity as we please by taking a’ close enough to a. As ¢
increases, however, the points must presumably wander apart, ultimately being separated
by distances greater than the scale of the emergy containing eddies, By waiting long
enough we expect to find the correlations as.close to zero as we please. Thus stationarity
is not possible, The statement that the points must wander apart is, of COurse, an assuwmp-
tion, essentially the same as that made in the theory of line stretching, and seems to the
author to carry implications with regard to ergodicity, since it precludes the possibility
of the system ever returning arbitrarily close to its initial state, Such a retarn, of COUTRE,
is associated with Birkboff’s ergodic theorem [8], which presupposes . motion - taking
place in a bounded region of phase space, but is presumably not a necessity for ergodicity.
Comparisons may be made with FPolya’s theorem [9] for the unbounded random walk,
which states that in three or more dimensions, return to an imitial state becomes
uncertain, Placing reflecting barriers on one or more dimensions, so as to leave the
number of unbounded dimensions smaller than three, again makes retnrn certain, and
seems 10 have correspondences with Birkhoff’s theorem. Of course, relative displacement
of 2 pair of random walks is again a random walk, while the relative displacement of
material points in a {luid certainly is mot, but if we may draw qualitative conclusions,
- this may be only another way in which turbulence must be three dimensional. Perhaps
in two dimensions lines do mnot streteh continually. It seems to the author that this
general area would be a most profitable one for further mathematical work.

2. — Qualitative description of the general problem

In order to grasp the difficultiés inherent in the general p;i'oblem, let us begin
with the equations governing the Eunlerian-Lagrangian transformation

'r(a,t)=a+ﬁ‘v(a,r)dc:a-r—f_u(r(a,-c),e)de (16)

where u (x, #) is the Eulerian velocity fleld, regarding which we may assume that we
have all statistical ‘information, and x(a,#) is displacement of a material peint,
initially at a. Statistical information regarding r is the desired end produet. The difficulty
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lies in the fact that we need the statistics of u(r,?) to obtain those of r, and it is not
clear how to obtain the statistics of a(r,?) from those of u (x,f), A graded series of
problems may serve to clarify this point.

a) To obtain the statistics of u (z (£),¢) on [0, T] , Where z () is a prescribed path.
This is an Eulerian problem.

b) To obtain the statistics of u (z (£}, ¢) on [0, T] where z (¢) is a random path, with
a pregeribed distribution, but statistically independant of w. This is no longer Eulerian,
but is straightforward. Consider, for example

ProB {u{z(f),t)=u*({} } =

ZPROB {w(z(t), ) sjﬁ* (#){z(t)=2*(f) } ProB {z({)=2" (1)} on [0, T] (17

z*
The two probabﬂl‘aes being independent by assumption, the first is an Kulerian quanhty :
¢) To obtain the statisties of u (r (¢),t) where '

r(t):ﬁ‘u'(r(t), 7}y dr

Thig is the full Lagrangian problem. We can still write (17)
ProB {u{r(t),z) =u* (¢) } =

EPROB{u(r(t),t)Eu' (#) | r(t)==z* (8) ) ProB {x (#) =z*(#) } on [0,T] (18)
Z-l-
but the distributions are not now independent. In order for r{¢) to have followed the

path z* (¢}, the velocity fleld must be a very particular one, s0 that each probablhty is
strongly dependent on the other. :

3. — A method of approach

One way of attacking this problem is to discretize the time axis, conmdermg (16)
then as a collection of simnlianeons algebraic equations (See Figure 2)

b=t <th<. .. <th="T
s

r(a,t)=a+ 2 u@m@t)t)d; (19)

F==1
where

Ap=tj1—1t;
If we consider the set of functlonl

£(x,, ., %) m_a—z o)A =1, (20)

=1 '
and ask for the probability that they have a zero in the vicinity of the points x,, this is
just the probability that (16) has a solution passing in the vicinity of a test function x (¢},
(say the « string » function, with x(#) = x;). This would be the functional probability

of the golution to {(16). Lel’s defer for a moment the question of how to utilize a functional
probability, and see if we could obtain it.
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One dimensional example. A rather coarse division of the time axis with x (f) and the dz; shown,
and a realization of r (f) which happens to pass through all the « windows ».

We reeall the Rice-Kac [10], [11] formula for the probability of occurrence of a
zero of a random function f (#) in the vicinity of @ :

daﬁf-ka(O,v;:p)lv[dv (21)

where I (u, v; #) is the probability that f takes on at # a value within du of %, while the
slope is within dv of v, This formulia can be extended [T] fo a sct of veetor functions
of a set vectors, like (20), The form is similar

+ o0
d.x_f P (0, avey 0, Hll, vesy Hﬂn; xl; rrry xﬂ) [ ” Hﬁ' “ i dH

—w

where H;; is an estimate for a 8 X 3 matrix, and || Hy |l is the determinant of

oX;
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the matrix with n? blocks, each 3 X 3. This is somewhat formidable, since we must
carry out 9 #? integrations. In un incompressible fluid, however, we have an enormous
snnphfmatmn, since it turhs out that

m. . ) .
—_ Uy o (% (E), 0} . )
of —e -»/; v =1 o (23)
Oy S A
and the 1ntegrat10n in (22) ean be carried out 1mmed1ate1y, giving _
dXR 0,...,0; %, ...,X,) ~(say o {24)
the probabi]ity that o _} B
‘ L N . : .
X(f})—a —f u(x(7), ) dr o o {26)
0

is w1th1n dx (£) of zero on [0, T]. Since we specify a path beforehand, x (%), and ask

for the proba,bﬂlty density that the eguation 1& sat}sfled by ‘it, this is Eunlerian infor-
mation.

4. — How to deal with the functional probability

. :
Supposing that we have a functional probability density, P{x (¢}}, this is far more
1]

information than we want or need, for a physica.l problem, We would like instead, say,
the probability density that r(a,t) =x, and similar quantities. To obtain these, we
must integrate in {unction space over all paths that end at the point of interest —e. g. —

f P{x (1))40 (26)
X (T) == x . B

At the present state of mathematics, such integrations can be carried out only
under very special cucumstances One of these gives rise to the Wiener integrals [12]

which correspond to P{x {t)} having the form appropriate to a particle undergomg
Brownian motion : Le — Gaussmn and separable. This, of course, is of no mtere:t n
turbulence. Even if we asgume that the Eulerian field is a Gaussian process, P{x (t)}

will not be Gaussian. The only other situation in which the infegration can be carned
out gives rise to the Fevsman integrsls [13]. These correspond to the non-relativistic
motion of an electron. The integrand is an exponential, with exponent gquadratic in the
action, When this is expressed as the least action plus the departure from least action
path, the part dependent on the end point (being an exponential with the square of the
action along the least action trajectory for exponent) can be removed from the integral,
the integrand then being independent of the end point. The integration need not be
carried out, since the valne of the integral is then a normalization constant.

Since we have no such set of fortuitous circumsgtances to aid us, we are momentam]y
at a loss to carry outf the integration. In the meantime at least a machine integration
conld be performed, using the Monte-Carlo technigue, and msking for the Eulerian
field the somewhat unrealistic assumption of a Gaussian process, with a homogeneous,
gtationary; isotropie, incompressible space-time’ correlation.
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SOMMAIRE

" Une voe d’ensemble est donnée de travaux analytiques antérieurs classiques concernant

le probléme de la dispersion turbulente, compte nen tenu des effets du mouvement molé-
culaire.

SUMMARY

A survey is made of some past and current analytical work on the problem of turbulent

dispersion, ignoring the effects of molecular motion,
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properties of the turbulence field. Especially for steady state problems, this includes
such molecular analogies as the turbulent diffusivity, ‘
of which the outline may be attributed to Boussingsq (1877), and the < mixing length »
theories, which here would simply suggest that |

_ R =u'l, ‘ D
with « the r.am.s. turbulent velocity and I a length characteristic of the turbulent large
structure. The mixing length concept was introduced by Tayrom {1915). In later work
[Tavror (1938)] he associated (dr with Lagrangian properties [see the following
section], and pointed out that !, hemce (Dp, must be a function of time for this
problem of unsteady dispersion. ‘

The representation of a transport raie as the product of a diffusivity and a mean
gradient can be correct in principle only when the transport mechanism has a charae-
teristic length much less than that of the @ field [see, for example, Boswonrs (1952)
Ch. I]. It follows that an expression like (6), even with @y = fn. (), is wrong in
principle except for asymptotically large times. [Cormsiy, 1957]. Then it turns out
also that Dy —> constant. ' :

Since we are not concerned with molecular diffusivity in thig discussion, we can
write (1) and (3) as L .
20 00

TR | (8)
or .
28 d B
S O=0 | ®)
and . ' .
20 D — |
—_— —_— gy = 4. 9
Y + v {24 _) 9

By subtracting (9) from (8), multiplying by velocity and introducing the Navier-
Stokes equations, we can deduce an equation starting with —é?c— (15 9). But this contains

a number of higher moments, so the system is still indeterminate — as will be any
finite hierarchy of such equations. At some point a simplifying assumption must be
introduced to truncate the hierarchy and render it determinate. (6) is perhaps the
simplest example of such an assumption, and yields a « diffusion equation. » '

Other assumptions have been applied in what seems fo be a mixed Eulerian-Lagran-
gian formulation starting with (2) and (8) [RoBBRIS (1960) ; Krarcenan (1961)]. In this
connection, note that the indelibility of the tagging enables us to write down immediately
the « solution » to (8) with (2) as initial condition : ‘

Ox,t) =8[x—X(o,1}] (10)
with average concentration

®(x,t) =3 [x—X (0,%)] (11)
X (a, t) is the (Lagrongien) particle position field. Thus the desired statistical solution
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to our stated problem, ® (x,?), coincides with the. probability density function of
X (o0,t). If this turbulence property is given, the problem ig triviaily solved. Generally
it is Fulerian properties which are accessible, so (11} simply says that the dispersion
problem is most directly viewed as Lagrangian.

(10) and (11) can be written in terms of Eulerian fields by expanding X in time :

2 .
X(o,t) =v {0,0) t + v:{6,0) 2'-{- ...... , {12)
where v (a,?) is the Lagrangian velocity field, schematically conmnected to u(x,%) by
v(a, 1) =u[X(at)t] (13)
so that '
' o ou
—_—V=— Vi
= > -+ (m- V)
Thus (12) can be expressed in Eulerian terms :
tz
X(0,5) =u(00)r+ {ut (0,0) + [“'Vu]o.o} ST (15)

to be substituted into (11). In any case, it appears that this « solution » is inherently
Lagrangian. This procedure is used by Roprrrs (1960); his distinctions between Eulerian
‘and Lagrangian fields are sometimes not emphasized.

For vanishingly smail times the non-infiniteness of acceleration constrains the fluid
point to travel in a linear extension of m (0,0). In this limit (15) reduces to

X —>u(0,0) ¢, (16)
(11) to B
B(xt)—=5[x—u(00)1%], ‘ amn
i. e _ ' .
8 (x,1) ~ t X padf. {u(0,0)}. S (8)

p.df. {u(0,0)} is the joint probability density function of the velocity components at
x=x 0 and £ =0. With stationary, homogeneous u,

. p.d.f {u(0,0)} = P, (u), (19)
- the fixed probability density of ., %2, ua. Bince Pu is independent of time, it is clear
- that © spreads linearly at small time.

As a final question in thig section on Dulenan formulation, we may ask about
the possible use of the Eulerian displacement field, & (x,#), a concept rarely used in
mechanics. The meaning of the Lagrangian posﬂ;mn tield, X (a, t), with initial posxtlon
coordmate a deﬁned by

a==X(a,0), : - {20}
is intuitively obvious. The connection between & (x,?) and X (a,t) may be taken as
Ex ) =X[a(x),t]l —ax)=x—aX1) (21)*

where a (X, ¢) is the inverse of X — X (a, ¥). The inverse of (21) is '
X(at)=atE[{X(af),t]. (22)

From (21) we see that £ (x, 0} = 0 by definition.

* 1 shounld like to thank J.L. Entcksen for a helpful discussion on this formulation.
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Evidently £ (x, t) is the net vector displacement which was traveled by the fluid
particle found at time ¢ at coordinate station x. £ was used, without being properly
identified, by Corrsiy (1952) in a Lagrange-Euler formulation of the problem of tem-
perature fluetuations in a linear temperature gradient across an isotropic turbulence.

In principle we can write the Navier-Stokes equations for & (x,t), and deduce

equations for its correlatiorn tensor and power spectrum, Even mthout the viscous
terms, these equations are quite complex.

C. - Lagrangian Kinematic Formulation

The Fulerian approach was doubtless appreciated soon after the corresponding
momentum analysis of Reyworps (1895)%, but the first paper actually presenting
equation (8) seems to bhe one by Kamrk pe FERIET in 1937

For the dispersion problem considered here, the Lagrangian approach, mtroduced
by TAYLOR (1921}, seems quite natural. With mdehble tagging of a fluid point, e. g. at
the origin at £ = 0, it iz obvious that the mean {Eulerian) concentration field at time #
is precisely the probability density function of the random Lagrangian particle position
X (o, 1).

In general,
X(ati=a -i—f v {8, 11} dt;. | (23)
Choosing a = ¢ for s1mp11c1ty,
X (0, %) = f (0,ta) dts. (24)
v (a, %) is related to u (x,t) by (13), =0 (23 ) can be Wmtten ag an mtegral equation,
X (a,#)=a-4 ﬁ u[X(ats), ] dts. ’ (25)

Even if we give the simple probability density function of v, we cannot predict that
of X becanse of the integration. But the primary measure of dispersion is the mean
square displacement, and Tayror deduced from (24) its connection with Lagrangian
autoeorrelation, e. g. px(0,7) == v;(a, %) vy (8, 2+ 7) ¢

1 d — [w |
— f = : . 2
5 ai X7 " a1 (0, ‘E) dz ( 6)

In Brownian motion theory the corresponding quantity is the diffusivity, and Tax-
1or (1935) pointed out that one might want to use this integral as a (timevariable)
diffusivity in an equation like (6), even though (6) might be wrong in principle.

Kavrt vp Farier (1839) showed that th.e‘integral_of {(26) can be written as
_ t : _ ‘ : ,
Xi) = f (t — 1) pas {0, %) dn. ©(2T)

Both he and BarcueLor (1949) presented a tensorial generahra‘aon and the comple-
mentary F‘oumer viewpoint with Lagrangian qpectrum

=

* See, for example, TavLOR (1915},
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Tavror was able to infer some asymptotic behaviours of _X? (t) direetly from (26)
and the necesgary properties of

a1 (0, ). Binee pyy—> o} for t — 0, o
Xi- vi 2 (28)
in agreement with (18). .
In the other limit he needed only to assume y,; is integrable in order to arrive,
for ¢ large enough, at
X1 — 2V Tu (29)
where

Ty = v— w1z (0, 7) dr
1

iz the Lagrangian mtegral {time) scale, He pomted out [TAYLOR {1935) (1)] that. \/ﬁ Ty

is a plausible length to put into a mixing length theory, if you use one.

(29) sbows just the behaviour familiar from Brownian motion, in which the
easily observable times are all much larger than the molecular motion correlation time.
This parabolic growth of \/X? together with the observed Gaussian shape for e _(ratio-
nalizable via a « central limit theorem »), corresponds to the hypothetical case of 8 (x, )

described by a classical diffusion equation, Of course, this does not prove the asymptotic
validity of the diffusivity concept, but lends it support.

His work alsc indicated an extension of (28) by the introduction of the expansion
in 7 of hit =

vz (0,9) =TT @ DB @I =77 {1— (30)

where _ —
v 3

ghe=— 2 = Qo , (31)
! fau (0, 0) ov1\?
ot
@y is the Lagrangian « time microsale », related fo the mean square fluid particle

‘ . v 2 .
acceleration, (%) , ag indicated. With (30), the small ¢ form is generalized to

6 0!11
and Taycor (1983) gave a rough esfimate for @i, in terms of the Fulerian « microscale »
in space. For non-decaying turbulence this was improved by Heiseneere (1948), whose
predlctlon was in moderate agreement with experiments in decaying, grid-generated
turbulence [Usror and Corxsiv (1953)]. See equation (57).

Equation (82) plus an estimate for aiy in terms of Eulerian properties comstitute
the first_step in a formal procedure for expressing the (Lagrangian) measure of dis.
persion X3} (#) in terms of Eulerian moments, via the power seriex expansion of py

asin (30) :
_y,u(o,-:)x'v'f {1—'1?{‘7—]- ’l?i'“—4'—!'—'...}. (33)‘

T (5) = 7% 2 (1,_i 1”2), | 32)

* TayLor (1921).
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For constant density fluid the one-point Lagrangian and Eulerian averages are equal
[Lomuezy (1957)1, so v —«%. Each Lagrangian time derivative can be expressed in

Eulerian terms, e. g.
21 \? oy ou\?
: = 34
(Z2) = (S +wt), 34

- [P 2 3\ [ow , ow\]®
: = ; . ‘ 3D
(aﬁ) [( 2t awf)( 50 " e, )] @
ete*. Of course the acceleration can be replaced by the forces, so that
2 ur\? (1 or . )2
= U 36
( at) Fom + vV : ‘ (39)

as was done hy TavLor (1835) and HEISENBERG (1948). In either case the higher power
terms become complex indeed.

It is, of course, possible to extend Taylor’s formulation (26), to the higher moments
of X by repeated multiplication of (24). For example,

(t = Sf f f f in tl) ™" (tz sl (tg) (2] (t4) dts dis dis dt; {(37)

Writing +' s for time differences, the integrand is

01 (@ £1) v (8, B2) ©1 (8, T2) B2 (8, To) = W11 (03 %, T3, T2). (38)
One may then be tempted to approximate these high order velocity moments in terms
of u;; by discarding the cumulants (quasi-normality). Buch a step does not appear

worthwhile here becanse the X -moments themselves are more likely to have negligible
cumulants. ‘

The spectral representation of (26) reveals another side of the coin:

1
0z (t) = S ar

—y = gin (of
= [ eu0) 2 39)

where @y, is the Lagrangian frequency spectrum, the Fourier cosine transform of
w1 (0, %),

. L e
®y (0,0) = :‘jo P (0, 7) cos (@ ) dT.
We see that

@Dz (o) -__tf By do) = t 03,
1]

@D (8) _ 1 sin (wt) . :
@T (0) = U_E j; @11 (0 (.0) —mt dew. (40)

Figure (1) is a qualitative sketch of the two factors in the integrand of (40). As time
progresses, ®,; (0, w) remains fixed, but the ¢ diffusivity filter function » continuously
contracts toward zero frequency. Since they change continuously with time, the precise

locations of zeroes at any instant are not so important; the envelope behaviour is of
primary relevance.

and

* Usero1 (1954).
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(40} presents the explicit measure of how much more efficient the low end of the
spectrum is for dispersion. It must be emphasized, however, that if $1; bappens to have
# large enough maximum at high frequency, this (small eddy ?) region may domlnate the
dispersion for guite a while [figure (2}].

D. — Lagrangian Dynamic Formulation

In section C we identified the dispersion with Lagrangian displacement, suggestmg
that « the problem » could then be exemplified by the attempt to express Xi (¢) in terms
of the (experimentally and theoretically more accessible) Eulerian statistical functions, -
presumably by way of the Lagrangian velocity autocorrelation.

Of course fluid mechanics can, in principle, be worked entirely in the Lagranglan'
frame. One possible Lagrangian approach involves starting with the dynamic equations

for X (a, t), seeking then sowme equations for suitable moments. Following Gererr (1949),
we can write one component as

oX
2 " ‘ . ( atl X“.l, Xs 1
X 1 (BEaXe) ) —
_at.2 ? &1, {32, a~3 alg a?, (tg ‘
L . Gy, Qg g o
i 20X, "
_ Xy, TR Xs
X e]— . X
+yd g S PP RE
~ 1, @2, B3 y .
[ ) ’aX ~
Xl) XE) ,atl
4 v.J A Xy, X, J W . (41)
- 01,y Gg, A3 A

J is the Jacobian, P is the static pressure field in Lagrangian coordinates. Even
neglecting viscous forces, (41) and the other two components must yicld awkward moment
equations. A possible advantage for theory is that cumulant discards (gquasi-normal
hypotheses) may be a better approximation for displacement moments than for velocity
moments. This is to be expected by « central limit reasoning ».

There is no obvious advantage to working in terms of Lagrangian velocity dynamics,
since the dispersion problem is concerned with displacement.

B — Lagﬁ:angian Diffusion Equation

Contaminant concentration rather than particle displacement can be chosen as
dependent variable in a Lagrangian approach. Then the starting point would be the
diffusion equation [in Eulerianr frame, cquation (1)], Writing the concentration field in
Lagrangian frame as

r (ﬂ, t) : 8 [X (a': t)r t]s



36

w can transform (1) into

B—P:CDJ a

( .P: X‘&y X3
oF

) 3 X2’ X.?.
1, 02, Qg )

@1y (1o, U2

X, T,X ‘
X],J(_i__s) X,

aly a’ﬂp a’s

+a@J

a1, dz, d3

X X'TE&E%EJ
+ @I TPV ag ez 05 (42)

a4, O3, O3
If we wish to use (42) as our starting point, it is reasonable to take X as statistically
given, just as we would wish to take u as preseribed if (1) were our starting point.

The initial condition for dispersion from a point sourece at the origin is
I'(a,0) =2 (a) ‘ {43)

Obviously the diffusion terms in (42) will 1ntroduce gome d}fhcult moments into the
equation for the I'moments.

Negleeting diffugion [eorresponding to the Eulerian eguation (8)], (42) reduces to

ol
- = (44)
ot
and the solution for our case, like (10), is
T'(a 1) =35 (a), . {45)

a trivial resulf.

The most llkely fature application of (42) seems to be in connection with estimation
of the additional effect of molecular diffusion during turbulent diffusion, the problem

- discussed by Professor SarrMan at thiy Symposium.

 F. — Kolmogerov Theory Applied to Lagrahgién Correlation and Spectrum

Equation (2) for Eulerian transport, dces not submit directly to application of the
Kormogorov (1941)* concepts of local isotropy and inertial range. In order to employ
his approach we must find a quantity whose behaviour is domlnated by the small eddies
of the turbulence.

We ca,n presumably apply KOLMOGOROV’S concepts to the Lagrangian eorrelation
or spectral function at large enough Rrynorps number. Having done that, we ean look
for dispersion functions dominated by the correlation or spectrum region so evaluated.

For correlation behaviour we look at _ _ .
[ (24 1) — 01 ($)1° = 20 — 2945 (7). (46)
For small enough < this is like aceeleration, and may depend primarily on small

* See also BarcHeLor (1947) and Barcueror (1953).
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structure, hence on kinematic viscosity v and on dissipation rate e¢. Possibly the
regtriction

1
T« - 11 dr = T]] (47)
1?1 0

will suffice. For dimensional reasons, we write

?—'un(r)wA\/_a(\/f’-) S48

g is presumably a universsl function, A & constant. The limifing behaviour of # for
v— o follows directly from a comparison of (48) and (30) :

B(s)—> 2, fors—o, ‘ (49)
I we DArrow the range of t further by a lower bound to keep it well above the

viseous range, i.e. if ‘
v el
-E-.- < v« Tu, L (50)

it is expected that v will vanish from (48). Therefore, in this inertial subrange, |
B(s) ~s, (1)
and hence _
3 —pq1 (7) = Ce=. B2)*
From (30) and (52), we can make a qualitaﬁvé gketch of py; (v), figure 3.

Figure 3

The corresponding spectral analysis gives, for o » Tii}

&1 (0) = By (\/g m) : (53)

* Due to Inour {1950).
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And for the inertial range,

1 g 7 : (54
—— O —
Tli << (( v » ) )
we choose v to eliminate v from 53) :

fbn (ﬁ)) = Bew—2. . (55)
A rough estimate of the dimensionless constant C ean be made by matching (52) to (30)

_ ) ;
at the KorMocorov time \/: :
&
¥

v2
We recall [equation (32] that 2-;-;— is just the mean square acceleration, And ¢ /—
i1 g

v vi® 56
e o

is the KormoGorov time, half the root-mean-square strain rate of the turbulence.

C can be estimated numerically if we introduce what amounts to Hersexsere's (1948)
3 ‘

estimate for =, Let u;'be an Eulerian component, A is the Tavror < microscale ».
. Tf &y —
- . : uf A
uf==vf for this turbulence [Louruy (1957)]. For large Ryms Y °

| a2 29 57y

o e Ry (
Using this to replace of; in (56), and replacing ¢ by the Tavror (1935) formula,
. = .

’
v

Uy '
e=15y O (58)
we find
1
C E ’ . ‘ (59)
50 {H2) becomes
- - 1
f (7) = v%——gﬂ- (60)
A rough estimate of the constant B in (55) can be gotten from the inverse of (40) :
;Izn ()= f @,; (&) cos{o 1) do. : : (61)
1] .
Differentiating twice and letting ©.= 0,
—fJ:n(O) Zf ©? ‘I’n ((r)) dw. - . (62)
[1] .
Into the integral we put (55), and on the Ieft we put (31) :
- i - | VE
2 = @& Py do =~ Be f doy. (63)
@iy o . N
T

11

* Bee equation (34}‘ of Unenor and CoRmsin (1958).
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The result is —
viv 12 ’ 61
Ba2—0H,
Introducing (58) and (57) again, we get the nnmerical estimate
B=1 (85)

| &
A rough estimate of the ratio Y can be gotten by

11

— = \/g" deo -
e P do ~ ¢ T (66)
o0 3 © '

1

This gives —
vf = ¢ Ty, ‘ 67y -
With (58) and (57), we can obtain S
@11 3 : .
: = . (68)
Ti1 WV Ra ‘

G. — Applicability to Single Particle Dispersion

As pointed out by BarcueLor (1950), and displayed by his spectral expression (39)
the simplest function of interest in dispersion, Xi (¢) is probably dominated by the
large (low frequency) eddies for all values of ¢, For ¢ — 0, (39) reduces to

X7 (1) = 2 f " Bua (0) do, - )

which is determined by the « energy-bearing» part of the spectrum. For increasing ¢,

the ¢« diffusivity filter function » in (40) diseriminates even more against the large o
region (figure 1).

Consider, however the « small ¢ » series expansmn of cos (wt) in the time infegral

of (39) : |
[ ® q) 4 t'i
X?(t)zzf 1;{“ e, }dm (70)
0 [
For very small # 5= 0,

_ — té L]
XF () —of B — f of By, do, 1)

a quantity whose « filter function » favors the higher frequencies. From (32) and (31)
we note that the integral in (71} is the mean square particle acceleration.

Tf there ix a time range for which (55) and (71) are hoth valid,
S d1o L 2 g 72
i (t) ~=vi —ﬂm (72)

Introducing the dimensioniess time variable St (which must be » 1 for this case),
¥ . .

and eliminating the residual ¢ with (58),
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— —_ 1 ‘
X? (t)mvfﬁ{l—ﬁm (%t‘*’)} (73)

For large enongh Ra, this truncation of '(70) will be good even though \ /-—j—t » 1

Casting about for other dispersion functions which may be dominated by eddies
in the intertial range, we note that higher power terms in (70) will weight the high
frequency end of even more.

A quantity which can be dependent on only a limited time range of the correlation

ig, for example, . L .
ax3 dXi f ¥ :
— (=L 2 ,T) dr. 4
( dt )t== ( 2t Jier , par (00 de ™)

When both ¢ and ¢ satisfy (50), we should be able to gpproximate a1 by (52).
On the other hand,

R— —_— T 3‘1
XEW—X{ @)=2 j; , { ‘/; 281 dT} @11, (75)

depends on the behaviour of p;; all the way to 1=0, as does
X () — Xy ()P =X7 ¢ —7). (76)*

H. — Lin’s Theo:;y

Ly (1960 I, TT) has presented a new theory which has some regemblance to a Kol-
mogorov type of approach, although he feels that it is basically less restrictive. We
shall go through his single particle analysis here, filling in some steps.

He chooses as unknown function the mean square Lagrangian velocity difference :

t+4 '
v (a, t + T) —V (a, t) = ﬁ [+ 4 (a, t;) drt;, (77)
~ where « is acceleration, with autocorrelation
S & (a,t 4 1) & (a, t) = o® R (7). (78)
It is easily shown that ‘
1.d ' T
——— W+ —v () =2 R, (2) ds. (79)
- 2 dx ' p
- Teor the approximation, he postulates the existence of a time 7, such that for
' . Ty < oo, :
< : 5 (80)
Rode| « Rods
= 0
If such a 1, exists, (79) can be approximated for 7, < v < » by
1 d ‘ r
e v [t 1) v (£)]* = By, (81)

2 dr

* This form can be deduced by a bit of manipulation. It includes a form for the displacement
autocorrelation X, (f) X, ({4 1).
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where

. 'Yy .
By = constant — o? f R, ds. (81a)

0
(81) integrates at once to

[v(t+ 1) —v() |2~=2Bp (82)
This is precisely the same form as (52), but obtained by postulating (80), whose nature

must be investigated further. B, has the same dimensions as ¢, but 1ts ¢ definition 3, (8la)
is difficult to interpret. - :

First of all, it can be shown that

f R (5) ds =0, | (83)
80 (80) cannot be true for indefinitely large <. | |

Another view of Lin’s requirement, equation (80), can be gotten by wrltmg the left
side of (79), which is exact, in terms of the velocity correlation coefficient, :

) A
Sa()E V(t—i—‘F)V(t)

2 _ |
| | = 8 () f 0 | (84)
where the prime denotes diﬁerentlatmn Formally, we also have
so (1) = f Ro do, | ' (85)
o (80) can be replaced by g | ‘ .
{80 (7) — B (nu) | « [§olm) | (86)

This condition must have a small range of validity for any smooth 8, function. But it
can evidently extend over a broad range of v > 7; only for a linear 8, (¥) region, as in (82)
and (52). The question to be answered is whether (80) iz stronger than, weaker than,
or equivalent to the Kolmogorov restriction to very large Reynolds number.

1. — Independance Hypothesis

The Lagrangian velocity autocorrelation is bagic to dispersion, as indicated in (26).
We are especially interested in :

wir (0, 7) = v;{a, t) vp (8, t 4+ 1) = v; (0, 0) v (0, 1), - (87)

ie.

. Wik (0, ) = % [01 O] 3 [X {0, ), T]’ (88}
which can also be written as

x (0,7 )“./If u; (o, o)u,,{ )B[K——X(o 1:)] dx. (8%*

Ag mentioned ‘earher, we would like to express e in terms of Hulerian moments
Formally, p; of (77) depends on lhe funciional probability of u (x, £}, because the Xiga

* This form due to SAFFMAN (priirate communication).
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functional of u as indicated by (25). An ad hoc simplification ean be made by ignoring
the analytical comnection of (25) and f{reating w,u [=u(x,7)] and X as randomly
related only. ug 4¢ a moment of their joint probability density funetion in all cases :

iz (0, 7) = ]]f [f i { j f / _w e by 8 (x —X) dx} P (s, %2, X) dus du' dX. (90)

In the limit of very large 7, fhere is no reason to expeect a statistical eonnection
between X and w, so

P (u;, 'y, X) = Py, w, Px (X). (91}

0, ©) ~ fjf Ei (X, 7) Px (X) dX (92)*

Eg (1, 7) is the Enlerian correlation tensor.

Empirically it is found that X;, X, X; are normal and uncorrelated in grid-generated
(nearly isotropic) torhulence for all times. Tt would be interesting to combine this faet
with the Favre-GavigLio-Dumas (1933) data on Eulerian space-time correlation, to
compare (92) with Lagrangian data for the full time range,

The approach to a form like (92) can be displayed more clearly by a more rudimentary
case. Suppose we have two stationary random variables, f{#) and s{z), which are in

gencral correlated. One of the attributes of a turbulent Lagrangian correlation also
appears in the f autocorrelation with random separation s :

L=f()f (x4 s). (93)

This transforms (90) to

The series expansion is
L=J°2+ff'8+§;ff”82+g—'-ff”’ B4, (94)

Suppose now that we make s uncorrelated with f and its derivatives. Then, taking
§=0 for simplicity,

L= f2+,,,ff”82+ ff’” ----- , (95)

thh is eagily shown to be

=

L= E (s) P, (8) ds. (96)
P, is the probability density function of «; E (r) =7F(#) f(® | r), the « Eulerian type»
of autocorrelation.
The turbnlence case is, of course, one in which ¢ is an integral funetion of f. Whenever
a more explicit connection exists, more detailed results can be deduced. Work on these
« self-dependent functions » is in progress.

J. — Deissler’s Computation for Very Small Reynolds Number
In the latest of a series of isotropic spectral computations made determinate by

neglecting the (n 4 1) -order moments in the equation for the n*® -order ones, DmissiEr
(196%) has appended a ecomputation of turbulent dispersion, This is based on the further

* CommsiN (1959).
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assumption [suggested by Bureems (1951)] that at very small Reynolds numbers the
Lagrangian and Eulerian velocity correlations in time only may be approximately equal.

The validity of Deissler’s procedure for rendering the hierarchy of Eulerian moment
equations determinate will doubtless be discussed at another session of this symposium,
1t should be noted only that his choice of a function of integration fails to introduce the
singular term k° log k, required by the analysis of BarcmELOR and Proupman (1956)*.
Also, he requires the fourth moment of the velocity correlation to be independent of time,
‘a prediction of Loirsianszm (1939) about which Barcarror and PROUDMAN raise doubts.

Nevertheless, these two simplifications are presumably valid for very small turbu-
lence Reymolds number, the « final period » of decay, for which the double correlations
alone are retained. This may be why no dramatic paradoxes appear in the double
space-time correlations in the « almost final period », obtained by negleeting quadruple
correlations in the triple correlation equation.

1t is more appropriate in this paper to look at the BURGERS apprommatmn

w1y (0, 7)== vy (B, T} 01 (&, £ + 7) == 2y (X, B) 1 (Xy £+ 7). o (97
This corresponds to neglecting all convective terms in (34), (35) and corresponding
higher order derivative moments : :

7 21 \* ot \2 98)
("at) "(at)’ - *
aﬂvl a aﬂul 2

(atﬁ) - (atz) ’ ()

etc. At first glance (98) as approximation to (34) looks like a traditional « Stokes flow »
type of approximation, known to be successful for estimating the flow fields past

three-dimengional solid bodies at Reynolds numbers well below unity. If we use (13)
to write the exact relationship, however,

v1(0,0) %1 (0, 7) = %1 [0, 0] 43 [X (0, %), 7] (100)
we see that (97) neglects particle displacement — which suggests further scrutiny.

Before proceeding, it must b¢ pointed out that this analysis gives fair agreement
with the dispersion data of UBERoOI and CORESIN (1953), especxa,lly f.or the lower REYNOLDS
number region, Ra =~ 20 [see figure 4].

From his final period solution, with numerlcal coefficient taken from decay expe-

riments, Demssier finds W g =0 (). _ (101)

on 18 the Eulerian < time microsecale » ‘ :
1 1 e \?
1 (51 7 (102)
aE uf ot
. _

On the other hand, the targe Ra estimates for‘

III

extrapolate to e for'Rx—a o**,

vi a1
Equation (98) says that op == &3, The questmn seems unsettled. Prruaps (98) is not

* % is waye number,

** The small R, estimate of this quantity by Useror and Conngiv (1953} is probably wrong because
it neglects the pressure term relative to the viscous term [using (36) as starting point]. o0
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a straightforward Stokes approximation. In the ordinary justifications, the convective
terms are neglected relative to viscous terms, not time-derivative terms.

A

02
008

004

FIGURE 4
Deisscer (1961) correlation discard theory; comparisons with experiment [Usgrot & Comnsmx (1953)]

In cloging this section, we should recall a qualitative conjecture on the difference
between Eulerian and Lagrangian correlations in time* : it seems likely that

U1 (0 0) 1 {90, ﬂ = U (09 ) a1 (05 t); (103)
Where u (X, t) and vy (a,{) are corresponding Eulerian and Lagrangian component
fields. %, (0, 0} = v1 (0, 0), since we start at the origin at time o. But vy (o, 1) follows
along the same fluid material, whereas u {0, £) is the velocity of other fluid, swept past
‘the origin by the general turbulent agitation. (103) is based on the notion that the
velocity persistence of a partlcular fiuid parucle should last longer than any explicit
Eulerian choice.

One extreme cage iz the random (rigid body) translation of a ﬂmd Then the two
correlations are equal.

K. — Recent Analyses

Still unpublished, but available in report form are application by Roeerrs (1960)
and KratcuNaN (1961) of the EraicenaN and ctmulant-discard turbulence theories,
respectively, to dispersion. The former leads to a wavelike dispersion in first approxi-
mation, the latter to negative probabilities of displacement. The latter result is primarily
a severe blow to the cumulant discard hypothesis. In the same report, KRAICHNAN

* Made by Smepparp and by Barcheior at the Oxford Symposium in 1958.
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demonstrates a small Péclet number series expansmn approach somewhat akin to
DrissLir’s approximation.

Both Opvxmov (1959) and Lix [(in press) and M. I. T, thegis by CmapaM (1961)]
have proposed the exploitation of the similarities between Brownian motion and turbu-
lent diffasion. Beginning with Tavror (1921), most basic work has concentrated on the
differences.

II. — RELATIVE DISPERSION OF TWO PARTICLES

A. — The Problem and the Euleria'n Formulation

The relative d.:spt,rmon of two fluid material points is a direct generalmatmn of
single particle dispersion. For the mean « concentration » field (e. g., in Eulerian frame)
we need only superpose the two concentration fields of the two «sources». These are
just the two probability density functions of single particle displacement. But now
we also seek the joint prodability density function of the two particle displacements
(Lagrangian frame) or the Eulerian equivalent, the correlation or coincidence rate for
the concentration at two points in space-time.

The s:.mplest goal of the case without molecular diffusion is perhaps the time
history of the mean square separation distance.

The diffusion equation, (1) or (42), still applies; the initial condition is
8x0)=3(x+3Ix—A), , (104)

when one particle is released at-the origin, x = o, 'and the other at any other position,
x = A, Of course, (104) would alzo be. the initial condition for the non-diffusive case,
equation (8). '

Up to the present, there seems to have been no effort put into the Hulerian apprnach

B. — Lagrangian Kinematic Formulation

Brier (1950) and Batcmyror (1952) were apparently the first to publish direct
applications of TavLor’s (1921) formulation to the relative dispersion problem.

With restriction to stationary, homogeneous turbulence and zero mean velocity,
each of the two fluid material points disperses according to equation (27) relative to its
own starting point. We write '

YA 6)=X(a + A, 1) —X (a,1), (105a)
or , Y=X—X. (105D)
Picking a = o for simplicity, we have as @; components

’ .
X{ = A —I—ﬁ (%1 (A, t’) dat’

' (106}
X] = f 1 (U, #’)dt’ .
0 .
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Thus,

i
V.= A, -I—j; (0] — vy) dt’, . (107)
so the expressi_dn corresponding to (26) is
1 d — i
| CRPT Yi= , (s, t;A) dr, {108}
where pi is the Lagrangian autocorrelation of the difference velooity, W=V —V:
Pix (Ts t; A) =W (A, t) Wy (A: T+ 1) ] (109)

_ Since w{A, %) cannot be a stationary variable except for asymptotically large t*,
pix Must depend on ¢ ag well as <. Therefore a transformation analogous to that which
produces (27) is not possible.

Equation (108) is effectively a « diffusivity », insofar as that concept may seem
definable in this problem, It kas, in any case, a variety of special asympiotes correspond-
ing to cases in which A, ¢ or ¢ each tends toward a small or large limit, singly or in pairg.

We shall not review this array of asymptotic forms in this paper. Tt will suffice
to make the following remarks :

' d — ‘ -
(1) When ¢—>o0, we get a simple linear growih of -&-t-Yﬁ with a coefficient
depending on Eulerian velocity correlation at fixed time. .

(2) When t— « for any A, or when A— « for any f, the two material peints
wander independently, so (108) degenerates to twice (26).

C. — Similarity Theory; The Obukhov and Batchelor Derivations
: of « Richardson’s Law ». :

In one respect relative dispersion is more accessible to theoretical analysis than
is single particle dispersion : when two particles in large Rrynorps number turbulence
“are separated by a distanee falling within the locally isotropic range of eddy sizes, the
¢ diffusivity » can be deduced by postulating similarity in the Kormocorov sense and
using dimensional reasoning. o '
The particular goal of most theories on the subject of relative dispersion has been
to derive RICHARDSON'S (1926) empirical law for « diffusivity », '
dY_f Fz;a o
"t YE, 11
7 1 (110)

Suppose that the initial separation |A] is of the order of the Kormogorov microscale,

, y3\ 1/4 ‘ ‘
| = (—— , or smaller (but not zero). |A| can be chosen so0 that after a time very
. . :

long compared with the characteristic time scales of the turbulence, but not infinite,
the two particles will satisfy the double inequality

. . -'fi<<\/ff_3<<L, (111
where L characterizes the turbulent large structure.

* The limit depends on A, being larger for smaller A.
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It must first be shown that whenever two particles are separated by any \F“, the
further statistical increase in distance is governed by turbulent eddies of size comparable

with \/ﬁ This is ordinarily taken to be obvious. It can’t be proven, but can perhaps
be made plausible by consideration of the mean square relative velocity,
;: (‘!*1 — ’f-?'l)2 _ :
R = ‘2'4:1 — 2 vt 112y
since .vl = pf. |

Of course wl docs not actually indicate tendencies to separate [at the moment of

tagging, for example, wisLo even though .

leo- Bancarror (1952)]. It does,

however, indicate the intensity of relative agltatmn, usua]ly monctonic with dlsperswn
in a random system.

From ressoning like that in the « Independdnce Hypothesis » (Section II), we

can guess that wh mostly increases with \/ Y? ag sketched in figure 5. If v/ Y2 1_s smaller
than most of the turbulence structure, the two fluid material points have almost equal

velocities. Tf \/ Y2 is lurger than most of the turbulence structure, their velocities are
- uncorrelated. For any particle separation; this implies that the eddies most efficient in
dispersing are those smaller than the separatmn length. Efficiency here means d1ffusw1ty
contribution per unit of kinetic energy.

|

22— : 3

o

S

I

¥

]

N-.

VA

FicUre b

Although the smallest eddies are most < efficient », they contain relatively little
energy. The large eddies {(larger than the particle separation) contain most of the energy,
but they are very « inefficient ». Hence, we arrive at the conclusion. that for ordinary
turbulence, the principal contribution to relative dispersion comes from eddies of a scale
the same order of magnitude as the particle pair separation, figure 6*. ‘

* It would elearly be desirable to make the foregoing discussion < honest » by repeating for particle
pairs the Fouricr analytical representation applied to single partieles in equation (40). -
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Having arrived at this conclusion; we are now free to argue that if the particle
separation lies in the Kormocorov similarity range, the statistical properties of their
relative motion must be subject to the corresponding similarity reasoning.

The earliest and most direct route to Ricmarpson’s Law for the dependence of
¢« diffusivity » on particle separation was that of OrvEHOV (1941). Assuming that Y?

d —
is within the inertial, locally isotropic range, he postulated that 2i —d—t—Yz depends

only on Y? and on the total dissipation rate s. Then the only dimengionally possible
- relation for ¢ diftusivity » is —_ :
' 1 de ‘ 1/8 %-2”3 . 13
— —~ 1

R TR ’ (113)

which is BicaarDson’s Law.
BarcrgLor (1949, 1952) began a bit more gemerally. Assuming that \/ Y2 is within
the locally isotropic range, he postulated " :
' 1 d¥2

| 2 dt
The choice of A and t as parameters is more or less equivalent to Opuxmov’s choice of

v ﬁ but it is pedagogically more appealing because A and t are more casily fixed by
the experimenter, : ‘

= . (5,9, A; t). (114)

The dimensional consequence of (114) is

1 dy? g \/4 g \1/2
— = -} A {— s 11
2 dt “G[(vﬂ) (v) t] (%)

with G an arbitrary function.
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When 3/ YZ is further restricted to be in the inevtial isotropic range, the explicit
dependence on v should vanish. Taking G to be a product of powers of ils two dimension-
less arguments, BAaTcHELOR eliminated one of these exponents, leaving an arbitrary

function of one argument : —
1 4y A
—_ —=eCh (—-~—-—-——-) . (116}

2 dit gl/2 §3/2
BATCHELOR next’ re:trlcted the problem to « large ¢ » in the gense that

vV 2y A, : (117)'
maintaining the preceding restriction that / Y? lie i in the inertial, isotropic range. Thls

implies at least ‘
_ ' A « VY «L, : (118)

Whem L is an appropriate choice of integral length scale. In order to fulfill (118) at
RrYNoLDS numbers attainable in the laboratory, it may be necessary to make the initial -
w3\ 1/4
- particle spacmg A as small as the KorLMogorov microscale. (
g

In any case, witk (117) it is reasonable to require that (116) be independent of A_'
Taking G to be a power law, the only choice is the zero power, so that

1 a¢ . | (119)
_ | 2 dt _ _ S '
Bolving thig for = .
~et, (120

and using this to replace ¢ in (119), BAT(‘EELOR arrived at RICHARDSON s Law, equa-
tion (113). '

Another interesting result follows in the t—> 0 limit 'lf\/ (hence A) is in the
inertial isotropic range, From the fact that acceleratwns cannot be infinite, we know
that the velocity correlations have zero slope for ¢ — 0. Hence [analogous to the fn'st
term in equation (32) for a smgle partlcle], we know from (1OR) that for ¢ — 0,

AY? _
— =~ B (121)
- dt
Comparing this with (118), we obtain
1 dYe |
-~ 3"-/3 A%R g, (122)
2 '

Up to the present time, there has been very little experimentation on relative
dispersion in controlled « simple » laboratory turbulence. The measurements of Kisrier

(1956) cover too small a time range and ReyNoLps number for compamson with gimilarity
theory.

D — Lih’s Theory

Lin applied his method (see section I, H) to the relative (hspersmn problem also.
His principal assumptions are

(=) ¢ is large enough that the initial separation, A, and initial relative velocity, w (o),
can both be ignored. This is the same as one of Barcmeror’s conditions.
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(b) t is much la,rger than some finite reference.time +,, defined by the inequalities

l f R (s) dal << R (s) de| . (1236}
and ‘

f R (7) do ﬁ "R (7) do |, (1238)
where R is the autoc‘orrelatio:; function of the relative acceleration of the two particles :

Rir,t; Ay=w: (A, t)-w; (A, t — 7). : (124)

The subscript denotes partial derivative. The argument in (123) is =
Following a Tavior procedure, but neglecting w (A, 0), he deduces

d — ¢ o
rry w?= 2f R ('c, t;A)dr. (125)

Lin then assumes that R may be approximated as a function of « and A only, hence

that w; (A, ?) is a stationary random amable With this assumption he is able to
deduce Ricmarpson’s Law: as o

1 dYE 3\ :
. s | — 2 \2/3 126)
v =(3) 2@ 120
instead of OpukHOV’S form, equdhon (113). B is a < constant » having the dlmensmnl
of energy dissipation rate :

S
B= wﬁf BRdrw. S (127)
i3

(126) has the apparent advantage of a fully estimated coefficient, if R (r;A) is
known. Lin also claims that his derivation requires no restriction to very large RexNoLps
numbers. As we have seen from the one-particle case, however large Rey¥oLDs number
could conceivably be implied by (123a, b).

Furthermore, the assumptmn of statlstlcally statlonary relative acceleration seems
drastlc indeed.

E. — Independence Hypothesis

For separation distances suﬂicientl’y large that the two particles move almost
- independently, we may expect that the two-particle Lagrangian velocity correlation pg

_can be approximated as a separation-probability-weighted . average over the Eulerian
velocity correlation field, E,,;.., (r, 7).

For the idealized case of homogeneous, statmnary turbulence, thisz generalmatmn
of equation (92) can be written by mspu:tlon as

o (A 7, t} = [I] Eu (A, 1) Pa (A A, 1, t) dA, (128)
where A is the separatlon of the two partlcles at different times, :
: A=X@+ A1+ —X(a0) , (129)

For the special case of particle velocitieg at the same time,



A-»Y=X@a+At)—X(at):

v (A, 0, 8) = f[f " Ew(Y,0) Py (Y:A,8)dY. (130)

Ag for the single particle case, it may be worthwhile to test (130) as an ad hoe

estimate for separations \/ Y not asymptotically large. The probability density functions
for isotropic turbulence can doubtless be assumed to be normal. ‘
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SOME ASPECTS OF THE EFFECTS OF THE MOLECULAR
DIFFUSIVITY IN TURBULENT DIFFUSION |

by P.G. SAFFMAN
King’s College, Strand, London W.C.2, England

SOMMAIRE

Loeffet de la diffusion moléculaire sur la propagation et la dispersion d'une quantité
scalaire passive transportée par un champ de vitesse turbulent sera discuteé. ‘

TLa diffusion de taches de chaleur en écoulement turbulent isotrope est considéré d’abord.
Pour de faibles valeurs du temps s’écoulant depuis lear formation, certaines propriétés des
taches de chaleur peuveni ftre facilement ¢valuées. En particulier, on peut montrer que
Pinteraction du processus de diffusion moléculaire avec Veffet de dispersion de la turbulence,
augmenle le taux de refroidissement de la tache, ou aussi bien sa dimension, mais que cetle
interaction diminue la dispersion de Ia chaleur relative an point d’émission.

En second lieu Veffet de la diffusion moléculaire sur I'étendue du sillage derriére une
source lindaire en turbulence homogéne est étudié. (Ceci est le  probléme de la diffusion
d’une particule). La description de la dispersion damns les termes d'une fonction d’auto-
corrélation de Lagrange généralisée est discutée, et la dispersion pendant de courtes périodes
de temps est calculée. On irouve que le carré moyen de la largeur du sillage est inférieur .
& ce qu'il serait si les processus de diffusion moléculaire et turbulente étaient indépendants
et additifs.

On considére la signification du travail de Townsend, qui montre que, pour de courts
intervalles de temps, la largeur instantanée du sillage est en moyenne augmentée (ou de
maniére équivalente, que le taux de refroidissement d'un sillage chauffé est initialement
accélére) par cetie interaction, :

On discute de V’estimation de la dispersion, pour de longues périodes de temps, et on la
compare avec les données expérimentales limitées dont on dispose. :

Le probléme du calcul de cette interaction lorsque le nombre de Prandtl est trés petit,
et Feffet de la diffusion moléculaire sur les taux moyens de transfert, dans une situation
quasiment stationnaire, seront mentionnés.

SUMMARY -

The effect of molecular diffusion on the spreading and dispersion of a passive scalar
quantity convected by a turbulent velocity field will be discussed. First, the diffusion of heat
spots in isotropic turbulence is considered. For small values of the time from formation,
certain properties of the spot can be evaluated easily. In particular, it can be shown that the
interaction of the process of molecular diffusion with the stretching effect of the turbulence
increases the rate of cooling of the spot or equivalently its size, but that the interaction
decreases the spreading of the heat relative to the point of release.

Seeond, the effect of molecular diffusion on the spreading of the wake behind a line
source in homogeneous turbulence is considered. (This is the one-particle diffusion problem.)
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The description of the dispersion in terms of a generalised Lagranglan auto-correlation
function 1s discussed and the d:spersmn for small times is calculated. It is found that the
mean-square width of the wake is less than it would be if the processes of molecular and
turbulent diffusion were independent and additive. The slgmflcance of TowNsEND's work
which shows that, for small times, the instantaneous wake width is on average increased
{or eqmvalently the rate of cooling of a heated wake is initially accelerated) by the inter-

action is considered. An estimate of the spreadmg for 1arge times is dlscussed and compared
- with the limited available experimental data.

The problems of calculating the interaction when the Prandil number is very small and

of the effect of molecular diffusion upon mean rates of transport in a quasi-steady situation
will be mentioned. .

1. - Imntroduction

When a cloud of material is released in a turbulent flow, it is spread out and
dispersed by the action of the process of turbulent diffusion. It is often useful to think
of this dispersion in terms of two of its properties. These are (i) the random wandering
of the clond as a whole and (ii) the change in shape of the cloud. The analysis of
property (i) is the problem of determining the probability of locating marked fluid
at a particular point. This question has been analysed by BarcEeLox (see [1]), who
showed it was equivalent to determining the statistical behaviour of the displacement
of a single fluid particle. An experimental configuration convenient for the investigation
of property (i) is the :preadmg of the wake behind a spuree in a turbulent streum. The
investigation of property (ii) is more difficult, and the analyaus has so far been mdmly
restricted to the problem of the separation of two particles (see [17).

In reality, any convected quant1ty will also be digpersed by molecular diffusion
which transports material down a concentration gradient. Both properties (i) and (ii)
are affected in some way by this additional transport of material, and the total dispersion

is due to the combined effect of mole(-ular ‘diffusion and the dzifusmn due to the
turbulent velocities. ‘

In a steady (or quasi-steady) configuration, where the mean concentration is a
function of -position but is independent of (or varies very slowly with) the time, the
mesn transport of material down the gradient of mean concentration is often described
in terms of an eddy diffusivity, This eddy diffusivity depends upon the (not necessarily
10(3&1) propertles of the turbulent, field, but ig also a function of the molecular diffusivity.

In pracnce the effect of the molecular diffusion in turbulent diffusion is usually
_ small and is in effect masked by the factor of ignorance about the turbulence. Neverthe
less, it is useful to know something about it, if only to be able to justify its neglect.

Molecular diffusion does not act only to modify the rate of diffusion of material.

It is known that the turbulent motion distorts a cloud into 2 more and more highly
irregular and contorted shape. The curvature of the surfaces of constant concentration
mcreases and their distance apart decreases, and the clond becomes more and more
“ spotty ”, until the concentrationh gradients are large enaugh for molecular diffusion
to become significant. The molecular diffusion then avts to smooth out the “ spottiness”,

and make the spatial distribution more umform until a balance is reached see [1] [2] .
a.nd [J]
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2. — The diffusion of heat spots

Congiderable ingight 1nto the effect of molecular diffnsion can he obtained by
considering the diffusion of a small heat spot created by the liberation of a finite
amount of heat at a point. Let § (x, {) denote the temperature (or concentration of any
other material quantity), then

%;»-{»uVB_#xV%, ‘ ' @)

where k is the molecuwlar diffusivity and u (x,¢) the turbulent velocity field. The faet
that equation (1) is Hnear in 6§ is of considerable importance (it iz assumed that all
concentrations are sufficiently small to have no effect on the turbulence), ginee it
allows the linear superposition of solutions.

TownNsEND [4] has shown how the shape of the spot for small values of the time
from release can be calculated. Referred to axes moving with the spot and in the
direction of the principal rates of strain, equation (1} is approximately

. 29 26 Yoy . _ -
—+ F oY —— F = V2, (2)
‘ oT oy o :
where @, §, v are the principal rates of strain whose variation with tlme may be

neglected for small changes of the time. If the heat is released at time £ =20, the
solution of (2) is

=8t — i s A A | 3
= bn( )‘Jexp P ( p + v ‘—Q— o )] , (2)
where ‘ '
. . K K K . ,
CL2 —_—— (e:!m - 1), b2 —_— (625t . 1)‘, 02: ——‘(62"'1 . J‘), (4)
] g . b

and . ‘

A A - e T o 3 ) R
6,. = = —_ 2 ves -

O = e = @ry" (1 T )

The heated volume is stretched by the turbulent shear into either a long filament
or a flat disk, according as @B+ is positive or negative. This distortien increases the
conceniration gradients and acceleraies the spreading of the heat so that the heat is
more widely distributed throughout the fluid. This is represented by the increased
rate at which the maximum temperature drops compared with the rate for a spot in a
fluid at rest. The mean dispersion of the spot (or variance of the temperature) in an
arbltrary du-ectlon 18, relatlve to 11:s centroid,

w‘;(ar2+b2_+02>=2xt+§—xt-"<oe2+-ﬂ2+~m>+--;

9 :
=2.Kt+—§—Kt3ﬂﬁ?+.-.., (6)

where the bracket denotes an average over the ensemble of turbulemt realimtions w2

is the mean.square-vorticity, and the shearing components of the turbulence are supposed
statistically isotropic. Thus the size of the spot is increased by the turbulence. 3
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Townsenp (see [1]) has also considered the increase in width of the wake behind
a line source due to the stretching aud rotation of the gheat of heated fluid by the
tarbulence. Neglecting the wandering of the wake as a whole and considering only its
instantaneous thickness, it can be shown that the mean-zquare lnstantaneous wake
width increases like

5
2at+ w0 (7)*

which implies further that the rate of cooling of the wake is accelerated by the furbu
lence.

The implication of these results is that the rate at which the volume of heated or
marked fluid increases is accelerated by the turbulence. Note that in the absence of
molecular diffusion, the volume of marked fluid remains absolutely constant. Turbulent
diffusion increases the size of the region in which marked fluid is to be found, but it
does this by making the concentration ® spotty " or pulling the marked fluid into
lIong thin lines and sheets; it does not increase the number of fluid elements which are
marked, this being accomplished by molecular diffusion alone. The rate at which this
last process occurs depends upon the concentration gradients. These are on average
increased hy the stretching due to turbulence, and in this sense we may say that the
turbulence accelerates the molecular diffusion. In other words, if a given amount of
heat ig released, the volume of heated fluid at a later instant is greater if the fluid
is in turbulent motion than it is if the fluid is at rest.

The above calculations prove this for small times only, but it is clear from the
physical argument that it is a continuing process, ceasing only when the concentration
is uniform. This, however, is for from being the whole story, as we shall now see.

Let us consider the dispersion of the heat spot (i. e. the variance of the temperature
distribution) relative to a fixed origin; this is essentially the one particle diffusion
problem. For small values of the time from release, we can expand the velocity u(x,{)
in equation (1) as a Taylor series in space and time; thus (in ferms of the suffix

notation) ‘
1 2 g
’lq'n(xgt) W(“@)O’I’_( m ) j+ ( at ) t*‘l’*”— (—aa’:ia%‘:)o T A

Normalise 8 so that {8dv =1, and define the moments of 8§ by X,= [@,0dv, Xy =

| #;, ; 8w, ete. Then d]fferentmtmg (1) with respect to time, multiplying by a product
of space coordinates and infegrating by parts over all space, we obtain equations for
the time derivatives of the moments in terms of the moments of the same and lower

“orders. The evaluation of these time derivatives at ¢—0 gives the coefficients of a

Taylor series in time of the moments. (This method was suggested in a letter by

* Towxsenp obtains the coefficient

rather than —. This is due to the use of an incorrect

4
diffusion equation which does not conserve the total amount of heat, In ihe notation of [11 equation
) - 20 « olgn) i) . .
8.8 of {1] should be + = . The result (7) them follows from this equation on
£ on on?
applying an identical analysis. -
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Dr. T. H. Evurson. A somewhat different method was employed in [5] ) In thiz manner,
it is found that :

X, (t) = (w)ot + — (%’:)t“r—-( Z”)t“r (Vo #+0 (). (8
&y

The tirst three terms on the right hand-side give the dwplacement of the fluid particle
which was originally coincident with the heat spot. Denote this displacement by Y: The
fourth term represents the separation of the centroid of the heat spot and the fluid
particle. Now _
(XI)=(Y3)+ &t ((us Vim)o) + kO ()

= (Y{)—Kk13w* + kO (%) M)
if the small seale components of the turbulence are isotropic: Thus the effect of molecular
diffusion is to make the dispersion of the centroid, relative to the point of releuase, less
than that of the originally coincident fluid particle. The dxspersmn of the spot relative
to its centroid is given to sufficient accuracy for the present purpose by (6), so that the
dispersion (in the 1-direction, say) of the spot relative to the point of release is

(Y'%)Jr:zxt—-«-g—xﬁw?{1+-0[(1+_:_:~) (wz)tfzt-l}, (10)

where the error follows from a more careful analysis of the neglected terms. (Alterna-
tively, the result (10) may be obtained by calculating Xy, in the manner described above.)
The physical significance of the error term is that the gize of the spot should be small
compared with the length scale of the small eddies and the tlme should be small
compared with the time scale of the small eddies, '

If the effects of the molecular and turbulent diffusion were independent and
additive, the dispersion would be ( Y7 ) + 2k ¢. The extrs terms in (10) are due to the
interaction, and they represent the effect of the additional concenfration gradients
produced by the turbulent shear. The striking feature of (10) is that the interaction is
negative (in the initial stages at least) and reduces the spreading of the heat relative
to a fixed origin. If we Ignore the 2k ¢ term which is the only term present when the
fluid is at rest, we can say that the dispersion decreases as the molecular diffusivity
increases, and that the molecular diffusion decelerates the turbulent diffusion.

The physics of the decelerated diffusion can be described as follows. The diffusion
of the heat relative to the origin is determined mainly by the comvection of the heat
by the fluid. Because molecular diffusion increases the volume of heated fluid, the
velocity of convection is not the velocity of the originally eoincident fluid particle, but
is an average over the volume of heated fluid. This effective velocity of convection will
tend to be smaller in magnitude than that of the originally coincident fluid particle,
and the larger the volume of heated fiuid, the smaller-the effective velocity of convection;
gimply because the correlation between the velocity at two points is a4 decreasing
function of the separation. Thus the greater the molecular diffusivity, the smaller is
the effective velocity with which the heat is convected away from the origin and the
less the dispersion relative to the origin. '

Because the equation governing the diffusion is linear, a Wake can be regarded as
the superposition of heat spots. Thus the expression (10) will hold for the mean width
of the wake at a fixed distance behind the source. This mean width is not to be confused ,
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with the mean instantaneous width which iz given by (7). The latter is the mean width
of the wake in one particular realization of the turbulence, being measured in principle
by taking the average of instantaneous traverses of the wake. The former is essentially
the width of the region in whichk wake fluid is to be found in different realizations;
it is determined by time averages at fixed points on a crosssection of the wake and
is in fact the quantity actually measured. (The expression (9) for the position of the
eentroid of a heat spot does not held for the position of the centroid of the instantaneous
wake, because the heat on any cross-section will not all have been released at the same
time. The mean-square displacement of the centroid of the instantaneous wake is given
by subtracting (7) from (10}.)

Although the mathematical results derived from the heat spot analysis are for
small times only, the physical arguments would appear to be valid generally. We have to
distinguizh, however, between the question of the volume of heated fluid and the two-.
particle diffusion problem. For the latter, it iz usually accepted that after a sufficiently
large time two particles will diffuse independently and their separation is determined
by the solution of the one-particle problem. The overall size of the cloud, as opposed to
the actual volume occupied by heated fluid, is determined by the two-particle analysis,
and therefore when the cloud is large the rate of increase of its overall size is decelerated
by the interaction. ' ' '

3. — The material ajuto-coi-relation coefficient

For diffusion in a field of stationary homogeneous turbulence (or in a situation where
the velocity field is statistically homogeneous in the direction of diffusion, such as longi-
tudinal diffusion in turbulent flow through a pipe), the dispersion of a fluid particle is
given by '

¢ ‘
{Yz(t))=2u2f (t— =) 8(z) d=, . {i1)
4 o .
Au{t) u(t 4+t '
where 8 (1) =< (#) ul 2—1- ) g the Lagrangian auto.correlation coefficient of the
_ u g
velocity of a fluid particle after a time interval . It is also to be noted that 8(r) is
_ given by
'uz 8() _—_f( (X, 7) u(0, 0) 8 (%, v} ) dV (12)4t
where - .
| 2 —0, o= (13)
—_——= X, 0) =& (X).
Dt ? ?

It has been shown {5] by considering the motion of an actual molecule that a
similar result holds when molecular diffusion is present. In this case, the dispersion
of an element of material is given by

t
(X2 (t])=2xt+2u2f (#— ) Belx) d7, (14)
0
© * This expression is for stationary homogeneous turbulence. It will hold for longitudinal diffusion

in a pipe if the brackets also denotes an average over all possible pesitions of the origin across the
eross-section of the pipe, as well as over the ensemblé of all realizations.
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where 8¢(7) is called the material auto-correlation coefficient. It is the covariance of
the velocity of the fluid at the points occupied by an actual molecule of the diffusing
material after o time interval 7, the average being over the turbulent ensemble and also
over the ensemble of Brownian motions of an actual molecule in each realization of
the turbulence. Further, S,(t) is also given by (12) with 8(x, 1) replaced by 0.(x, 7).
the equation for 8, being ‘ :

Db,

D¢

Just as 8(v) represents the persistence of the convection veloeity of a fluid particle,
s0 8¢(7) represents the persistence of the conveetion velocity of the material. The inter-
action of the turbulence and the molecular diffusion is expressed by the difference
between 8 and S¢. For small values of 1, for which (15) can be solved approximately,
it is shown in [6] that

=KV, Be(x, 0) = 38 (x). - (15)

ow? t

+ KO (s2) (16)

1
Be{r) =8() — —
=80 —
from which the result (16) follows.

The expression (16) is an alternative formulation of the basic physical idea that
molecular diffusion decreases the effective convection velocity away from the origin,

The assumption that this effects always persists 'implies that 8 (v) < 8k (1) for all 7, so

that ‘
(X2 (1)) < (Y2())+ 2t

The expressions for the interaction which were derived from the heat spot analysis
are of limited value since they are theoretically valid for small times only. Tt is to be
noted however, that TownsgND [4] has verified experimentally that the rate of cooling
of heat spots is accelerated and moreover that the expression {#) holds quite well (when
modified to take account of the decay) for heat gpots .in decaying grid-generated
turbulence for values of the time larger than were expected (a result, incidentally, of
some gignificance for the structure of the turbulence).

For one-particle diffusion, the concept of the material auto-correlation enables an
intuitive estimate of the interaction for large times to be obtained. We have '

u? (8 (7) — 8« (7)) 2f( % (X, 7) w (0,0) [0 (%, 7) — (X, )] )dV. (17)

The right-hand-side of (17) is the difference in the convection velocity at time © of an
element of the diffusing material and. the .originally coincident fluid particle, correlated
with the initial velocity. If the Prandtl number v/x (v is kinematic viscosity) is not
small compared with unity, the spreading of the diffusing clement of material is
determined by x and the velocity shear which produces the differential convection is
determined by o = (%?)'/2, provided the Reynolds number of the turbulence iz not too
small. If we assume that (17) is also proportional to § (7), thig factor being required
to take account of the decay of the velocity correlation with time, we have on dimen-
sional grounds ' ' B

u? (8 (1) — 8¢ (7)) = xe.8 (3) f (07), (18)

where the underlying physical idea implies that f is an increasing function of oT.

TRETT
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- 3 - L] » 1
The expression (18) is in agreement with (16) if f = 7 wt for o1 ¢ 1. As @t becomes

large compared withh unity, f must tend to a constant a, say (it cannol tend to infinity
as this would make (X¥ pegative). On substituting into (14), we find that for ot 1,

(X2 (8)) = (Y2 () b —m (Y2 (0)) o 2. (19

We note that xe/u® =+/15 (k/v)/Rr, where R is the Reynolds number based on the
dissipation length parameter A — (156 u®/w%)1/2, To see the relalive magnitude of the
various terms, we use the result that (Y2 (#)) ~ Cu? t, £ for large 1, where ¢, is the time
scale of the energy containing eddies and € is a dimensionless constant of order unity.

3
(It is sometimes convenient to define ¢, by ve® t,/u” =-2— ; then for the decaying grid-

generated turbulence in a wind tunnel, £, — ¢, where %, is the time from the virtual

1
creation of the turbulence.) Then (Y2 (#)) »--rﬁ-;Cv R\?t, and we have

V16
(Y2 ()~ — OV R b — X2 a Ck B £ 4 2. (20)

For suiticiently large Reynolds numbers, it is clear that the 2xt term is negligible
compared with the decelerated diffusion term, which Is itself small compared with the
turbulent diffusion term.

The expressions {19) and (20) will break down if the Prandtl nowber is very small
(e. g. liquid metals). The step from (17) to (18) implicitly assumed that the turbulence
was responsible for most of the diffusion and that & and 0, were not very different.
These agsumptions reguire that the Péclet number (Reynolds number times Prandtl
number) is large compared with nnity, and they may be all right, so that (19) ig valid,
even if the Prandtl number is small provided the Péclet number is still large. On the
other hand, when the Prandi]l pumber is small, the value of the viscosity, or equivalently
the vorticity, should be unimportant; and provided the Péclet number is large, the
difference between 6 and 0. should be controlled mainly by the range of eddies in the
inertial subrange. This supposition leads on dimensional grounds to an expression, for
wt > 1 and £ (k/e)l/3,

(Ke)l/z
El

(X2E) y=(Y2(t) ) —o*

(V) Y+ 2kt (21)

where € ig the rate of energy dissipation per unit mass and «* is another constant of
order unity. Note that (ke)2/? /u? = /15 (k/%)*3/Rs, so that the difference between (19)
and (21} lies only in the different dependence on the I'randtl number in the interaction
term.

For small values of the Péclet number, equation (15) for 8¢ can be solved as a power
weries in the Péelet number, and substitution into (12} then gives 8, in terms of
weighted integrals of the two-time FEulerian correlation. The greater the meolecular
diffusivity, the smaller the weighting functions will be. The first approximation for

zero Péclet number is
3

u? 8 (v) = (41;:(7)_75./‘( w (X, ) % (0, 0) e e dV {22)
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which suggests as an approximation ‘

8k (5) = 8 (<) ¢ (kv/F) (23)
where [ is the length scale of the energy containing eddies, and g~ 0 as k— o and
¢ (6) = 1. An expression similar to this with an exponentially decaying function for g
was suggested by Burouks and Hinzk (see [6]), but without restriction to small Péclet
number. By taking different forms for 8 and g, various expressions for (X? () ) can be
obtained from (14), but this topic is not worth pursuing further,

The experimental evidence on the effect of the molecular diffusivity is sparse, most
experiments having been carried out under conditions where the effect is small. MicxuL-
8EN [7] has measured the spreading of He and CO: (Prandtl numbers of order unity)
behind a source in grid-generated wind tunnel turbulence. The experimental points are
limited but they are reasonably consistent with (19) with «=0.23. In other experi-

ments [8] with Hs and CO: in a turbulent air stream through a pipe, the seatter is - :

sufficient to prevent reliable comparisons with theory being made, but in so far as any
conclugion can be made, it is that there is no interaction. In short, the position is that
further experiments are required, and these should be carried out at as low a Reynolds
number ag possible, in order that the effect of molecnlar diffusion should not be masked
by the turbulent diffusion.

4 — The eddy diffusivity

In the absence of molecular diffusion, the flux of material in o statistically steady

(0}

situation i s {ub)—XK T , where K i is the eddy diffusivity (thls expression is no more

than a definition of). When molecular diffusion is present, the flux is

{ e} + 08 g 240

on on :

The difference between the quantities (u8) and {ub.) arises from the different distribu-
tions of 6 and §, that of 8, being more uniform and less “ spotty ”. The velocity of convec-
tion of an element of diffusing material is not, so to speak, the velocity at a point, but
rather the veloc¢ity averaged over a small region, the size of which increases so that the
effective convection velocity decreases as the molecular diffusivity increases. Thus we
expect that K. < K 4 k, so that the interaction acts to decrease the eddy diffusivity.
Alternatively, this may be considered (see [6]) in terms of mixing length theory, An
element of diffusing material mixes more rapidly with its surromndings because of
molecular diffusion, so that the mlxmg length and consequently K. decrease as K
increases.

8o far there is no satisfactory theory of this phenomenon, although attempts have
been made based on the mixing length theory. The following is a crude atfempt at
estimating ( u8,) which in prineiple wonld seem to be a sounder approach.

Ag pointed out by BarcarLor [2], the spectrum of 8. fluctuations is cut off at a wave

: o \ 172 , :
number n = (— , provided the Prandtl number is not small compared with unity.
K

Thus the effective convection velocity of the fluctuations of 6. shonld be the veloeity
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averaged over a length scale n—'. Thus the mean-sguare effective convection velocity is
of order

1 25\ 2
(u—!—n—‘ g: '?n‘* %) = — 0 (7% 0?) = u? — O (kw)

where u? is the local mean-square (component of) velocity. This suggests that

Bre
K,czK(l—?—)—l—K,

which is analogous to (19), where § is a constant of order unity.

The form of K* when the Prandil number iz small sompared with unity is not
clear. However, by analogy with (21) and (23), the forms of K, may be;

Kw:K(l—w)+K

uz
for small Prandt! number but large Féclet pumber; and

' ki,
Kx:Kg —ITE +K

for Prandtl and Péclet numbers both small where g (2) is some function which tends
1o zero as #—» .
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DISPERSION IN TURBULENT SHEAR-FLOW

by J.0.HINZE
Technological University, Delft

SOMMAIRE

La théorie de la dispersion de particules de fluide individualisées issues d’un point
donné, en tarbulence homogéne et stationnaire et dans um courant de vitesse moyenne
uniforme, est bien établie (Analyse pour une particule). L

L’allure asymptotique de la dispersion dans le cas de temps de diffusion importants
peut étre décrite grice aux équations de diffusion de Fick, avec un coefficient de diffusion
constant, puisque les propriétés statistiques du' mouvement des particules fluides sont des
fonctions stationnaires du temps. T

La distribution de probabilité du déplacement des particules est gaussienne.

Si celte distribution normale s'applique aussi A des temps de diffusion courts, la des-
cription de la dispersion avec un coefficient de diffusion, alors variable avec le temps, est
également possible. ,

BATHELOR a montré (Réf. 6) quune étude analogue de la dépendance asymptotique dans le
temps de Ia dispersion peut étre menée, pour certains types d’écoulements turbulents, station-
naires cisaillés, lorsqu’ils offrent une analogie de structure au long de I’écoulement vers Paval.
Dans le eas d’un écoulement dans un tube ot un canal, les propriétés statistiques des particules
de fluide sont des fonctions stationnaires du temps, et I’analyse précédente s’applique
directement. La preuve expérimentale est acquise quant & la dispersion longitudinale d’une
quantité finie de solution salée dans TPécoulement turbulent de 'eau dans un tube (BE&f, 7).
Dans Iécoulement libre turbulent cisaillé, présentant une similitude de structure au long de
Pécoulement vers I'aval d’une origine donnée, les propri¢tés statistiques peuvent étre consi-
dérées comme des fonctions stationnaires d'une nouvelle variable par un choix judicieux des
échelles de vitesse et de temps. : ‘ .

Dans le cas hypothétique ‘'d'un écoulement cisaillé plan, illimité, et homogéne, la diffusion
latérale des particules individualisées, A partir d'un point d’émission peut étre décrite mathé-
matiquement en retenant 'hypothése d'un coefficient de diffusion constant. Cependant, d’un
point de vne physique, Pexistence d’'un tel coefficient de diffusion constant est discutable,
puisqu’il n’existe pas d’échelle de longuneur finie caractérisant I'écoulement,

L'utilisation d’un coefficient de diffusion turbulente est aunssi discutable, malgré un
coeflicient non constant variable avec la position, si 'écoulement cisaillé est inhomogéne. Les
expériences, relatives & ce cas, sont peu nombreuses, et elles concernent toutes la dispersion
latérale 4 des distances trés courtes 4 Iaval d’une source d’émission fixe. La distribution
latérale des particules marquées parait étre oblique. ‘

Deux hypothéses et théories expliquant cette distribution sont discutées.

SUMMARY

The theory of dispersion of marked fluid particles released from a given point in a
homogeneous steady turbulence with uniform mean-velocity is well established {one-particle

5
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analysis). The asymptotic behaviour of dispersion for long diffusion times can be described
with the Fickian diffusion equation with a constant coefficient of diffusion, since the
statistical properties of the fluid particles motion are stationary functions of time, The
probability distribution of the particle displacements is Gaussian, If this normal distribution
also applies to short diffusion timmes the deseription of dispersion with a, now time-dependent,
coefficient of diffusion is equally possible. :

BarcHELOR (ref. 6) has shown that a similar analysis of the asymptotic dependence of
dispersion on time can he made for certain types of steady, turbulent shear flows when they
show a similarity in structure in downstream direction, In the case of flow through a tube
or channel the stalistical properties of fluid particles are stationary functions of time, and
the above analysis immediately applies. Experimental evidenee is available on the longi-

tudinal dispersion of a finite amount of salt solution in the turbulent flow of water in a
pipe (ref. 7). In free turbulent shear flows with a similarity in structure downstream from
some origin the statistical properties can he made stationary functions of a new variable
by a suitable choice of a velocity and time scale, - :

In the, hypothetical, case of a plane, unbounded and homogeneous shear flow the
lateral diffusion of marked particules from a fixed point source c¢an be deseribed mathema-
tically on the assumption of a constant coefficient of diffusion. However, from a physical
point of view the existence of such a constant coefficient of Qiffusion is questionable, since
there is no finite length scale characterizing the flow.

Also questionable is the use of a coefficient of turbulent diffusion, albeit a non-constant
one varying with position, if the shear flow is inhomogenecus. Experiments, referring to this
case, are few and they all pertain to the lateral dispersion at very short distances downstream
from a fixed line source. The lateral distribution of marked particles appears to he skew.
Two hypotheses and theories explaining this distribution are discussed.

) - Introduétion

The dispersion of a transferable property by turbulent motion in a shear flow has
been the object of many investigations. Two ways of approach have been followed. The
first one is based on the assumed analogy between molecular and tiurbulent motion, both
being a random process. The method adopted here is a2 more formal one, in that just
as in molecular diffusienprocesses. a coefficient of diffusion is introduced; the problem
is reduced to finding a solution of the convective diffusion equation subject to given
inifial and boundary conditions. The coefficient of eddy diffusion may be assumed to be

- constant (Boussinesq) or a scalar quantity which may still be some assumed function
of place, or connected in one or another way with the turbulent flow pattern (e, g. mixing
length theories). '

The second way of approach is to consider the dispersion as a random diffusion
process of fluid particles as defermined by the structure of the turbulence. The average
higtory is studied by following a Lagrangian description of the random walk of the
fInid particles. :

In principle the two methods ave applicable to any type of turbulent flow. With
the first method there may be difficulties, even insuperable, of a mathematical nature. But
this-method may also lead to non-realistic situations, if the assumptions eoncerning the
behaviour of the coefficient of eddy-diffusion are wrong, or .even if the description by
means of a coefficient of eddy diffusion may be unjustified on physical grounds, A typical
example is the dispersion from a fixed source in a plane homogeneous shear-flow with
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constant gradient of the mean-velocity. This problem has been solved by LavweRipr [1],
who assumed a constant valte of the coefficient of diffusion in the convective diffusion
equation. Though the solution for the dispersion downstream of the source is according
to what may be expected, namely a skewed lateral distribution, with a greater spread
at the side of the smaller value of the mean velocity, yet the sitnation is untenable on
physical grounds. Not only an unbounded homogeneous shearflow with constant gradient
can not be realized, but also the existence of a finjte, and constant coefficient of eddy
diffusion is very questionable since there is ncither a finite length scale (integral scale),
nor a finite velocity scale, that characterize the turbulent flow pattern. '

The second (Lagrangian) approach has been applied with success to dispersion
processes in a homogencous isotropic turbulence. Since the particle velocities are statio-
nary functions of time, and dccording to the central limit theorem for long diffusion
times the probability distribution of the particle displacements iz Gaussian, the:
asymptotic behaviour of dispersiop can be deseribed with the Fickian diffusion equation
with @ constant coefficlent of diffusion. So in this case the two approaches become
identical. If the normal distribution of particle displacements also applies to short
ditfugion times the description of dispersion with a now time-dependent, coefficient of
diffusion in the Fickian equation appears possible.

The two approaches may not hecome identical when the turbulent flow is not
homogeneons. The turbulence velocities of fluid particles then are no longer stationary
functions of time. The relatively simple method of solution obtained for the homogeneous,
isotropic, case is no longer applicable. As a matter of fact, only for a few restricted
cases partial solutions of the problem of dispersion in flows different from - the homo-
geneous, isotropie, flow: have been obtained. These cases shall be considered in this paper.
So only the second approach will be congidered and no review of results ‘obtained
according to the first approach will be given, since it is believed that the first approach
does not basically contribute to the knowledge of dispersion by turbulence as such.

2. — Lagrangian description of dispersion

Without too much loss of generality we may confine ourselves fo plane, gteady
turbulent flows, with components of the Eulerian mean-velocity U and V in the # and
y-direction : . - — '

U=U(ey); V=Vigy); W0 S (1)
* The turbulence flow pattern is not homogeneous in either direction. ‘

Consider a marked fluid particle starting at.time #o from a point (2o, ) of the flow
field. At any time the velocity of the fluid particle is equal to the Eulerian velocity at
the point that is passed by the fluid particle at the instant of passing. So _

Uy (¢35, @0, o) = U (2, 9) +-u (s w), (2a)
_ V'p (t; tﬁ, o, yﬁ} = V (ﬂ)‘, :l!) + v (talmy y): ) (21))
U, V and u, v are the Eulerian mean and turbulence velocity components at the point (#, ¥)

passed by the fluid particle at time ¢ At this instant the displacement of the fluid
particle from the initial position (#, %o} is given by the components X and Y. Hence.

() =@+ X #);5 () =g+ Y ()
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The values of X and Y are given by

|
X (l‘}; t(), Ty, yo) = f: dt’ Up (t’; ‘tlu, Ly, -’Eo]. (3(1{)

LR ]

¢
X (25 to, &o, Yo) xj;dt' Vy (t,; tos o, Yo)- (3b)

The particle velocities U, and V, are not stationary random functions of time,
since in the expressions (2a) and (2b) U(z,y) and V (e, y) vary with time because the
coordinates # and y of the particle vary randomly. with time.

Consider a large namber of realizations of the flow and take an ensemble average of
particles with the same initial position (z,y). Since the flow is assumed to be gteady,
the average displacement does not depend on the time ty, but only on the initial position
(0, Yo) and the elapse of time ¢ — £, The initial time #, becomes. irrelevant, and may
conveniently be put equal to zero. Thus we obtain for the average displacement at time #
in the # and y direction |

— . ¢ e
X (£; @o, Yo) = ‘/; dt’ U, (V' o, %o). (4a)

a— r —
T (¢; @0, go) = f 0¥ T, (¢ 20y o). (43)

ﬁ, and vp are the ensemble average values of the Lagrangian velocity components,
and still functions of time. :

For studying the dispersion by turbulence we may consider the displacement of the
fluid particles relative to the average value. The dispersion in the x-direction is

D3 (t; o, Yo) = [X (t; to, @0, yo) — X (t; @0, ¥0) 1°
Now differentiate first thig expression with respect to time

a : - : —
T DI =2 [X (¢; to, @0, Yo) — X (£; Do, 90)] [U, (£; 2o, &0, Y0) — Uy (£; 2o, Ya)] .

S ’ 3
—2 [ at [T, st o0 50)— 0y (73 2 g0)] 1Us 3y 30,90 — T (55 00,9001
o 0 .

Integration yields

. ’ 2 l t :
D3 (%, @o, Yo) = 2 j; dt’ ﬁ dt” [Uy (5 to, @0, Yo) — Uy (¥ 20, %) 11U, (£ to, #a, Yo)

— U (s 20, 30)]  (52)

Similarly for the dispersion in the y-direction

t b
D} (t; 0, yo) = gﬁ dt’ﬁ at” [V, (¢ ko, @0, H0) — Vg (V'; o, o)1 [V (£ Eo, %o, o)

— Vo (@0, 90)]  (5Y)

The Lagrangian velocity correlations and the dispersion depend not enly on (¢, ),
but also on the initial position (@, ) of the marked fluid particles.



3. — Dispersion in homogeneous turbulence with constant mean-velocity

If the turbulent flow is homogeneous and with a constant meanvelocity (in the
x-direction, say), then the velocities of the fluid particles are stationary functions of
time, Because of the homogeneity of the flow the expressions (5¢) and (54) for the
dispersion become independent of the initial position of the fluid parncle, and the
La.granﬂ'lan correlations are symmetric functions of the time.

This case has been studied first by Sir Geoffrey Taror [2] and after }11m by many
others (see e. g, references [3] and [4]):

Since U = constant, V = 0 we obtain from (2a) and (2b)
ﬁp =U and V,=0 |

From (4¢) and (40) we obtain for the average displacement
XW)=Tt; ¥Y=0

Introduce the Lagrangian correlation coefficients

Re( =0T = 20T (®)

w2

where #" =~/ 4?, ¢ =—~/¢?, and #—¥¢" =,
The expressions (3¢) and (35) then reduce to the well known forms
—_— 4
DEH=X—XP= 2u’2[‘ dt (t—7) Ry (7) (Ta)
0.

L 4

and .
Diit) =Y2= 20’2‘f ds (t — ) oBr (1) ~ {Th)
1]

An assumption, confirmed by ,'experimental evidence, is that the Lagrangian corre-
lationg bhecome zero at large values of the argument. So for large values of the time ¢
we may write

Di(t):zu&[tf”dwﬁl,(r) —fﬂdrtmﬂr,(t)]ﬁzu'ztfwan;,('c) (8a)

0 0 0

Dg(t)=2v’2[tfﬁdm,RL (=) ——fwd'cm,RL (1)]—921}'21?]‘”611,,1{;,(1) {8b)
0 0 o

Since according to the central limit theorem the probability distribution of X and ¥
becomes Ganssian ag ¢ => oo, a coefficient of eddy diffusion may be mtroducod

and

D2 Y @ )
€y = o = =u"? . 27 «Br. (7) E (9a)
D2 (e . ,
e,,:-é}——: v"ﬂ dt Ry, (%) (99)

The dispersion can be deseribed with the Fickian diffusion equation with the dbm’e '
constant, diffusion coefficient.

¥
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Barcrerok [5] has shown that if the probability distribution of X and Y is Ga.ussian
at all times the dispersion can still be deseribed with the Fickian diffusion equation,
it the coefficient of eddy diffusion is given by

L % 10
E= ———
2 dt - (10)
Hence from (Te) and (7b) we obtain
LI N PR 1
eﬁm-——— 3«‘7:- " - .
2 di , el () (te)
and - .
1 d s |
e—=F——Dy—v jo dr Ry () (11%)

The above results huve been confirmed satisfactorily well by many experiments on
the diffusion of heat from a fixed source placed in a grid-produced turbulence, taking
into account the limited aceuracy of this kind of experiments.

4. — Dispersion in non-homogeneous, self-preserving, turbulent flows

The grid-produced turbulence mentioned in the previous section, is strictly not homo-
geneous even at large distances downstream of the grid because of the decay of the
turbulence in downstream direction. Yet the experimental results on the diffusion of
heat from a fixed source are not in contradiction with theoretical resulls bused upon the
assumed homogeneity of the flow and upon the assumption that the velocities are
stationary randomfunctions of time. So for long diffusion times the dispersion D, appears
to increase linearly with time. The explanaiton is that these experiments have been
carried out in a region of the flowfield where the turbulence during decay exhibits a large
degree of selfpreservation, i.e. the turbmlence structure remains ulmost similar at
different values of the time or distance to the grid. In that case the charavterigtic length
seale of the turbulence varies as $Y% while the characteristic velocity scale of the
turbulence varies as £—%/2, so that the iime scale of the turbulence processes varies
proportional to . Hence it is not the turbulence velocity »(f) that appears to be a
stationary random function of time but #/* w(t); so. v'(f)-t"/* is a constant. BarcHELOR
and TowseonD [3] suggest to tuke a new variable ¢* defined by ‘

dt ' t
di*=—— or t*=In— ‘ (%
_ i 1 ‘
where t, is arbitrary, for describing the dispersion process in a decaying turbulence.
BaTcHELOR (6] has shown that this procedure may be applied to other types of flows
where the turbulence is self preserving (namely in free turbulent shear flows as jets and
wakeflows) in order to obtain relations for the asymptotic behaviour of dispersion
processes for long diffusion times. .

Before discussing further the dispersion in free turbulent shear flow, brief conside-
ration wiil be given of the axial dispersion in a steady turbulent flow through a straight
conduit of uniform cross section. Ilere the flow and its average statistical properties
are homogeneous in the flow direction, so that the velocities of the finid pariicles become
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stationary random functions of time after a sufficiently long time after their release,
potwithstanding the fact that the particles move through different parts of a cross
section with different values of the mean velocity (vef. 6). Then the infinence of the initial
position of the particle at ¢ = ¢o becomes diminishingly small, and the axial displacement
of the particle, in a single realization of the flow becomes '

X (f) f AU, (t) ~Tawt _ (13)
. . i}

where U,, is the average velocity in a cross section of the conduit. This relation becomes
more correct as the time increases. If the probability distribution of finding a particle
at a point of a cross section is uniform over a cross section, in one single realization
of the flow after a very long time a fluid particle, moving freely over the cross section
as it flows downstream, attains all values of the mean velocity and the result is an
average value equal to the discharge velocity of the flow. So all fluid particles must have
the same mean velocity equal to the average, discharge velocity. This result has been
confirmed by experiments by Sir Geoffrey Tayror [7] with injected galt in a flow through
a straight circular pipe; the velocity of the position of the maximum concentration of
salt was equal to Ugy. Also the resulis of experiments with a suspension of small spheres
in water (BATCHELOR, BINNIE and Privres [13]) have shown that the average regidence
time of a large number of particles during the flow through a given length of the pipe
was equal to the length of the pipe divided by the discharge-veloeity. The small difference
observed could be accounted for by the effect of the finite size of the particles.

In the ease of free turbulent shear flows as jets and wakes at 4 certain distance from
a virtual origin the structure is similar in sections downgtream (self preservation), so0
that this strocture can be expressed in terms of a length-seale and a velocity-scale which
vary with the distance 2 to the virtual origin. Let L(z) and V(z) be the Eulerian length
and velocity scale respectively. The corresponding time scale T(z) = L/V. For a particle
the statistical properties of its velocity Uy(t) vary with the distance 2. Let v(t) and F ()
be the velocity and time scale respectively of the particle motion: It is reasonable
to assume that at a meun distance travelled after time ¢ by particles, released at the
virtual origin, equal to X(#), the velocity scal v(i) =V [X(¢)] and the time scale
F(t) = T[X(2)]. B
' Now it the turbulence preserves its structure as it changes in downstream direction,
then the particle velocity Uy(#) may be made a stationary random function of a new

variable * by a suitable choice of the length and velocity scales, and hence of the time
scale, Thus BarTcHELOR suggesis

dt* o« a (14)
F(t) T
and . )
- Up(t) —Uo . .
Ry = * 15
5 F (%) | | (15)

where F(2®) is a stationary function of #*. The constant velocity Us is not zero in the
case of wake flows, otherwise it iz usually zero.

Barcerror put Leca?, Voéw"“, go that .
p() < [X(5)]~¢ and F ()« [X ()P H.
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Making use of the relevant values for p and g fe. g for jetflows p— 1, wakeflowg
P+ q=1} it then turns out that for all types of flow considered F(tyext and conge-
quently again

t
¥ = ln—
31
Thus for all these flows, including decaying-isotropie turbulence the time scale of the
turbulent motions varies proportionally with the time ¢ measured from the instant of
release of the particles at the virtng] origin. '

Furthermore BATCHELOR obtuined the important result that the digpersion D,(z)
and D,(¢) are proportional with the width of the shear layer at X(#), though the axial
dispersion D, may be much larger than the lateral dispersion D,. For long diffusion
times a coefficient of eddy diffusion may be introduced which for jet type flows varies
proportionally with X (#)1~¢ (for a round free jet, ¢ =1 and the eddy diffusion coeffi-
clent becomes' a comstant), for wake type flows proportional with X!-%¢ {in a plane
wake g =1/2, hence the eddy diffusion coefficient is here constant too),

5 .— Dispersion in a homogeneous shear-flow

CorrsIN [8] has considered the dispersion from a point sonrce in an unhounded
homogeneons plane parallel isotropic-turbuleng_ flow with a mean velocity in the
#-direction and which has a constant gradient dU/dy.

Such a flow is not Physically possible, and therefore the cage is purely hypothetical.
Agmume for simplicity U =90 at y = 0, - -

From eqs (2¢) and {2b} we obtain

- B 131
Up(t) =U(y) + ula,y) = Sy YO tuw (16a)
Vo(®) =v(m, y) = v(2) (16b)

',Dhe displacement of a fluid particle originating from the source follows from
(4a) and (4b)

P i

X(#) = f d¢’ [——Y(t’)+u(t’)] (17a)
0 dy _ ‘

Yit) = ﬂ tdt’v(t’) (178)

From these relations follows for the average particle velocity and the average
displacement obtained from a large number of vealizations

ﬁpzﬁ_/',,:o and X=Y=o0.

The dispersion from the point source in the z-direction

t ¢ T ~_=T.
Di ) = 2f dat’ [ dt” [—CEL— Y -+ u(i”)—l [E-[-i— Y({#) 4+ u(t’)] (18a)
o LS dy | JL dy
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Similarly in the y-direction

D2 (t) —2f dt’f at” o'y o(t”) {18b)

With the introduction of the Lagrangian coefficients

w(t) w(t—) sod By () = v(t) v(E—)

F
. u.vz ,U'2

oRr (1) =

Conrain obtained
~E

P2 () :21;'2J dt (6— =) (R (1) +

{}

av 9 o 1o o
+ (———) 2% — ¢ I dr By, (1) — tzf dr e B (%) +—1 dt 12 Ry, (1) (19a)
dy 3 Jo o 3 0 _ :

and

¢ I '
D2 ({) = 207 f; dr (t— 1) Ry, (7) - (19%)

o

If Ry (r) becomes zero at large values of v so that f dt Ry, (%) is finite Dy, () wonld
a

vary as t? and D, (¢} as t¥%, However in this type of flow it is not obvious without
more that the correlation becomes zers at large distances. On the contrary it might.
equally well be justified to assume a finite correlation ut any value of = and the agympio-
tic behaviour discussed above does no longer hold. For the same reason it is not justified
to introduce a coefficient of eddy diffusion on the ground of such an asymptoiic beha-
viour.

For very short diffusion times so that the Lagrangian correlation coefficients are
approximately equal to one, the expressions (19¢) and (19b) reduce to

‘ 5 a2 '
D?; (t) fanerd u'? + ""‘]‘E v (-(—ig;-) AR o . (20&)
D} () ~ v'%2 : (20D)

As may be expected the expressions for ¢ — 0 are identical with those for a homo-
geneous field with zero mean-velocity gradient. However, depending on the mean-velocity
gradient in the shearflow the effect of this gradient on the 1ong1tud1nal dispersion
becomes noticeable with increasing diffusion time.

6. — Dispersion from a fixed source in a shear flow

‘We may again consider a steady flow parallel to the # axis, and with the U com-
ponent being only a function of the y-coordinate. The flow is homogenecus in the
x-direction but not in the lateral direction. Such a flow occurs for instance in a
gtraight channel or in a plane Couette flow. It may also be congidered. as a first appro-
Ximation to actual flows that are not strictly parallel flows. As a matter of fact the
experiments known on the digpersion from a fixed source, namely those by DrYDEN and
SKraMSTAD [9] in a turbulent boundary layer, by Corrsiy and Usgro:r [10] in a round
free jet, and by Hixzk and Vax DER HEGGE Zunen [11] in a plane free jet, are not,
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made in a parallel flow, but for the study of the dispersion the flow in the peighbourhood
of the fixed source may be considered as almost parallel.

The flows investigated are not homogeneous. From the general considerations given
in section 2 it becomes clear that an interpretation of experimental resuits (in particular
when the diffusion times are long) in the light of theories on the statistical behaviour

_ of fluid particles in an homogeneous turbulence is difficult, if not impossible, to make.

Now it turns out that all the experiments mentioned above refer to short diffusion times.
No data are available on diffusion times long compared with the Lagrangian infegral
seale, say. The reason for this is that the turbulent flows studied show a high value of the
relative intensity of the turbulence, especially in the case of the free turbulent jets. All
experimenters used 4 thin heated wire as a line souree of heat. The wire had to be taken
thin becanse it should approach point source conditions and it should not disturb the {low
too much. 8o the heat capacity of the hot wire was very small. The turbulence spread of
the heat produced by the wire within the integral scale of turbulence was already so great
the at longer diffusion times the temperature rise became hardly measurable with reaso-
nable accuracy. The measurements remained confined to the direct neighbourhood of the
hot wire. In this small region the meanvelocity could be assumed to have a comstant
gradient as shown in eqs (20) was negligibly small. According to these eqs (20) the
wire increasing linearly with distance. Apparently the direct effect of the meanvelocity
gradient as shown in eqs (20) was negligibly small. According to these egs (20} the
lateral dispersion is given by ,
DI (1) = T2 =22

The observed lateral distribution of the heat was skew, with the greater spread
at the gide of the greater value of the mean velocity. It may be remarked that this
skewness is just opposite fo that which would occur if the dispersion could be described
by means of a constant coefficient of diffusion. '

Coresin [12] assumed that the lateral spread at a cross seclion X downstream of
the wire was directly determined by the probability distribution of the v-component of
the turbulence velocity. In other words, the lateral temperature distribution is simply
the probability density of the lateral velocity fluctnation.

Hence the skewness of the Y-distribution is caused by the skewness of the v-distri-

: bution, and the skewness factor 8, is equal to the skewness factor 8,. A skewness of the

s

is

v-digtribution xhay be expected since the distribution of the relative intensity

r

: ‘ v
not uniform. Meagurements on the digtribution of o and on . the skewness 8, showed

- that. ‘
dU P d s u o s
an ave opposite signs
a dy U PR Zn
av

- and 8, have the same sign.
dy :
With the restriction of small skewness and small deviations from the Gaussian
distribution, Corrsin choose the following probability density distribution P :
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(" lf().r.co<v<c
P(“ﬁ“):—“'—exp* T [ T

’ - R
= v,--——exp* v 13 ;for-—c{—.ﬁ_—<—i—w &)
pL7 (— N 2 2 | —— €
(F) (). )

Rince negatively directed velocities originate in the y > 0 region we may expect

the negative fluctmations (——.—I.J.?) 10 be a measure of the turbulence intensity at

v - ‘ : : .
Y= + 1, say. Conversely ( D ) to be a measure of thig intensity at y =—1.°
+ .

So to a first apprommatmn, assuming a small value of the turbulence- 1nten31ty gradlent

we may put _ _ _
e : A Y LA !
(+). == ()~ (7).
o

v\ [ v d ‘l
(T)-+E+(“ﬁ")o"(—¢z? & )

The constant ¢ which accounts for the shift of the maximum in the probability-

o N v
density distribution curve P (mt_-]—— in the negative ) direction, and the cons-

tant € are related to the ieng‘th ! and the gradient of the relative intensity of the
turbulence, Satisfying the basic relations for the -probabﬂity densgity, there iz obtained

:—\/_c and c==- - ( ¢ -’i_-'-)o

dy U

.‘-!

The skewness factors then are approximately
41

da v :
7 ( —*) (22)
(v) dy U Jo
o _

Syzsﬂz_

U
, _ v
One of the basic relations mentioned above which has to be satigfied by P -—-ﬁ-—:—)

is, that its first moment should he zero. Hence also the first moment of the lateral
temperature digtribution shnuld be zero; the eentrmd of this distribution curve shounld
coincide with y = 0.

. Now the mesasured temperature distribution eurves did show a finite value for the
first moment Y. I‘urthermore in fhe free jet experiments the gradient of the relatwe
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dy

) o
intensity had a sign opposite to that of the absolute intensity. Thus (—»- —“_ﬁ_) and
¢

L (2N haa ite si
—— [ ada OppPosite 81 8.
i g Jo B gn |
- Binee fthe skewness of the v-component reflectz the distributions of the lateral

1 v ,
turbulence fluctnations, - (E—) should determine the skewness rather than
[} ¢

d o
(T ﬁ) . Consequently opposite signs of the skewness-factor 5, and 8, may be
y 0

expected,

Hixze [4] followed a different approach to explain the observed skewness of the
temperature distribution eurve. He connected this skewnesy with the local turbulence

—_ au
shear stress —puv. If for instance, s > 0 and consequently uv < 0, on the average

more fluid particles with negative » will be transported with a positive » through a
control pMane; conversely for negative values of v on the average more particles with
positive u will pass the control plane. To positive values of v correspond positive values
of y. Hence for the same value of X, particles with a positive v (positive Y) need a longer
time to reach this value of X than particles with negative v (negative Y). Consequently
the particles with positive » may have travelled a longer distance Y before reaching the
value of X. For at short diffusion times

Y(t)zVot
— 2
X (8) o= (T + wo ¢ (25)
Hence
Vo Yo
Y=Y =— e X —m e 24
W= =T, T+t up 34

The relation (24) immediately shows that indeed .-Y"(w) %= 0, and that the probability

: U
density distribution of Y is not identical with that of v, Only when = £« 1, is it the

case approximately.

: S
. Since = <1, we may expand (24) in a TavLor series. We then obtain for the

average values of Y, Y? and Y®:

Y @W)e  (Bv) (W v)e
o e ot — — - 250;
- % Twm o mt (250)
¥z (%) (uv?), (220%)

b —2 —" s J— 250
PO T TPTE (250)
s %o (u3)q (u? v%),

=8 — 25
o T T T (25¢)

3/2

Thus the skewness factor 8 =ﬁ/(§’§) can be expressed In terms of the skewness
factor 8,
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According 1o eq (25¢) the shift Y of the céntroid of the temperature distribution is

only proportional to the local shear stress if the effect of the higher order correlations
may be neglected.

In order to calculate the skewed temperature distribution Hinze assumned a normal
joint-probability-density distribution of the turbelence velocity components # and «.

P LAY it —1 u? 2urRy, 4 2 (26)
TT/) 2ew’s’ [1 — R2,] 112 exp - 21—R2) | w2 .,.... W' w? 1)

(uv)o

where Ry, = ——— .
U . . .
Consider an element dady at the point (#,y). The probability of finding in this

element dedy a flnid particle originating from the source of unit strenght at (e = 4,
¥y =0) reads. o

]

. 1. % w
Pz, y) df’f'dy="ﬁ'§“]_mdtoF =T - dudy

With du = da/(t — L), dv = dy/(t — #;) and the relations (23) and {26) the temperature
distribution can be calculated. For the normalized distribution, which is equal to
P(n)/P{0) there is obtained (see ref. 4)

P(n) 1 ' exp — U242
PO) ! N2 Tjum oy aw’ \2 .
@ [1~21"-,-Rmm - (4"’—) -rF] | 20 [1-_2-.;.3,,,,14 + (,..;) ,]2] (1)
& v v BAX
where n=y/z. S :

Comparison of this result with the measured temperature distribution in the wake
of a hot wire placed in a plane free jet showed satisfactory agreement in the region
— 0.2 < 1< 0.2. Beyond this region the computed distribution was too skew. In the
relation (27) the value of R,, obtained from Y/ according to (25¢) (neglecting the
higher order terms) was nsed, while the values of ¥’ and + were obtained by trial and
error, The skewness factor 8, could be determined from the measured temperature
distribution, the skewness factor 8, could be calculated from the relation between S,
and 8, This relation has been obtained by making use of the joint-probability demsity

s » - u v N
distribution F ('ﬁ’ -ﬁ) -and some assumptions suggested by Barcueror and Towsenp [3)]

concerning third and fourth Qrder correlations :

u a
Sﬂ’_‘_fsv_g_ﬁ‘Ruv‘}“?’Sﬁ“ﬁ'Rm (28)

This relation shows that the skewness factors can have opposite signs.

Though within the, rather restricted, accuracy of the measurements and of the
method used the agreement was satisfactory, yet it must be kept in mind that the
assumption of a normal joint probability density distribution of % and v is probably not
justified. The marginal disteibution of u and » then ave normal, in contradietion with
the skewed distribution of v.calculated from eq (28). Then the theory is only valid for
small diffusion times, that is small values of /(U + u), and y/ve. An estimate shows
that for the conditions pertinent to the experiments, the theory may only be applied
to values of m < «//U, which is roughly 0.2 in these experiments. ' .
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DISCUSSION DE LA SECTION:
DIFFUSION ET POINT DE VUE DE LAGRANGE

. Professeur J. LUMLEY
Professeur P, G. SAFFMAN
Secrétaires scientifigues

Professeur CoRRsIN introduces Professor LuMLEY. _

Professor LuMieEy (U.8.A.). — ¢ The Mathematical Nature of the Problem of Relating
Lagrangian and Eulerian Statistical Fumctions in Turbulence ».

Professor CormsiN called for comments and questions.

D" Frengier. (U.S.A.). — Asked in what connection the speaker wished to introduce
Markov processes.

Speaker, — Markov processes would perhaps be used to generate fest functions.

D* Krarcaxan (U.S.A.). — Asked if the speaker would regard a result obtained by the
Monte-Carlo method as theoretical or experimental.

Speaker. — The result would be regarded as theoretical since the technique would be

used to carry out an integration, rather than using the machine as a model of the physical
problem on which experiments could be performed.

Professor Yacrom ({1.8.8.R.). — Wondered in what connection the Feynman integrals
had been introduced since it seemed to him that these integrals are only a special notation
for the solutions of the Schroedinger equations.

Speaker, — The Feynman integral was introduced simply as an example of a similar
problem. ‘

Professor Yacrom (U.S.8.R.). — Pointed out that the Monte-Carlo method can be used for
the evaluation of Wiener integrals and more gemeral functional iniegrals when the measure
in function space corresponds to some Markov process and wondered if the speaker was
familiar with the report of a Monte-Carlo evaluation of a Wiener integral in the paper by

Gelfand and Chentsov in the Russian Journal of the Theoretical and Experimental Physics.
(Vol. 31, p. 1106, 1856). ' ' : :

Speaker. — Said that he has seen the reference to this article in the survey by Brush,
¢ Functional Integrals and Statistical Physics » published in the Reviews of Modern Physics,

Professor S. CORRSIN. — ¢ Theories of Turbulent Dispersion ».

Chairman called for comments and questions.

Professor Favire (France). — Called for suggestions for further work to be carried out
in the Institate and inquired whether there was continued interest in space-time correlations.

Speaker. — Indicated that strong interest existed.

Professor FAVRE, — Ihquired as to whether work should be done in gi-id turbulence
or in a boundary layer. ‘ : : : D
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Speaker. — Indicated that measuremenis behind a grid would probably be preferable
because af the simplicity of the flow.

- Professor FAvRE, — Pointed oui that measurements in a boundary layer may be more
significant due to the non-zero production terms.

Professor Liermann (U.S.A.). — Pointed out that the boundary layer is more eomplex
due to the strong influence of viscosity near the walls, .

Professor Kovasznay (U.S.A.), — Suggested that measurements of scalar fluctuations, i. e.,
temperature would present the simplest case. ‘

Professor FAvRE (France). — Suggested possibility of making space-time double and
triple correlation measurements in a fully developed pipe flow.

Professor STEwaRT (Ganada). — Pointed ouf that it seemed preferable to design expe-
riments that would be truly comparable to the theory. In this case in any turbulent field it
would surely be preferable to measure spacc-time correlations for single hot spots, catching
the same spot at more than one place.

Professor SarFMan (Gr. Brit.). — « Some Aspects of the Effcets of the Molecular Diffu-
sivity in Turbulent Diffusion s,

Chairman called for comments and questions,
D* KrarcuNAN (U.8.A.), — Inquired as to the smallest value of R, to which the equation
— — V15 ax ‘
X2 () = Y2(v) | 1 — ‘ + 2wt
\"_Pl;,t

might be valid. Did the speaker think that there might be circumstances in which the
interaction of turbulent and molecular dispersion decreased with decrease of R,? Is
R, = 1 the condition in which interaction is most significant ¢

Speaker. The equation quoted was derived by intuitive arguments applied to the
expression (17) of the paper, and the arguments implicitly assumed the existence of a
Kolmogoroff range of eddy sizes. Until the argument can be made rigoroms, it is net possihle
to specify the smallest value of R, for which it may be valid. A necessary, but perhaps not
sufficient, condition for the equation to be valid is that the interaction term should be
small compared with Y2 (1),

The interaction of turbulent and molecular diffusion decreases with decrease of the
Reynolds number, as shown by the expression (20); it is the ratio of lhe interaction ferm
to Y2 (v) which increases as R, decreases. I do not know whether this ratio has a maximum.
As long as X2 (1) is positive, the expression is not nonsense.

- Professor YacLoMm (U.5.S,R,). - Wished to make a comment related to the paper of

‘Professor Corrsin as well as that of Professor Saffman. He pointed out that the representation

of the mean square dispersion in terms of the Lagrangian spectrum is a special case of the
representation (Trans, Amer. Malh, Soc.,, v. 50, n° 2, 226-257, 1941) given by Kolmogoroff

" (Dok. Akad. Nauk SSSR, v. 26, 6-8, 1940) and also by Schoenberg and Von Neumann for

a random function with stationary increments. These authors had shewn that such a function
could be represented as an integral of a velocily only if the second moment of the spectrum
converged, but if molecular motion is taken into account the displacement function is not
differentiable and the second moment of the spectrum diverges logarithmically. Professor
Yaglom also wished to direct attention to the similarity of the work reported by Professor
Saffman and that done recently by E. Novikov from the Institute of Atmospheric Physics,
Moscow (see Dokl. Akad. Nauk. SSSR, vol. 139, n° 3, 1961). The principal results of Novikov’s
work relate to the form of the spectrum for very large wave numbers. It was suggested that
it might be appropriate to present a summary of this work after the session or Energy
Transfer in Homogencous Turbulence, ‘
Professor Liepmany (U.8.A.). — Questioned the non-existence of the derivative referred

to by Professor Yaglom. He felt that this implied a contradiction between the molecular and
continunm points of view.

Professor Yacrom (U.S.S.R.). — Suggested that the situation was similar to Brownian
motion and that the small seale motion was primarily depeadent on molecular agitation.
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Professor Hinze (Holland). — < Dispersion in Turbulent Shear Flow ».
shairman called for comments and questions. ‘
Professor LIEPMANN (U.S.A.). — Ingquired whether the central limit theorem could be

quantitatively applicable.
Speaker. — Indicated that the application was only qualitative.

Professor LiepMaxy and Professor Commsin (U.S.A.). — Pointed out that there exists
no formal central limit theorem for continuous dependent variables.

Professor TavLoR {{r. Brit.), — Wished to bring to the attention of the group some
recent work by Mr Bretherton of Cambridge, England onr dispersion in non-turbulent shear
flow. He felt that the resulis were of considerable interest. '

Professor LuMLEY (U.S.A.). — Pointed out that the result of Batchelor, Binnie and Phillips
mentioned by Professor Hinze could be obtained as a special case of the Liouville-type
theorem mentioned in Lumley’s talk. ' ‘



COMMENTAIRE DE LA SECTION:
DIFFUSION ET POINT DE VUE DE LAGRANGE

par le Professcur 8. CORRSIN
Président

M. le Président, Messieurs, pendant ce Collogue nous avons entendu quatre .langues '
le bon francais, le mauvais francais, le bon anglais, le manvais anglais. Ce matin, vous
serez exposés 4 en entendre une cinguiéme : anglais-francais.

Je m’excuse de lire ma conférence, mais autrement vous ne pourrlez pas reconnaitre
du tout qu’elle est vraiment une langue. :

Je veux remercier les personnes qui ont aidé i la traduction, particuliérement
M. Verollet.

La diffusion & partir d’une source ponctuelle dans un champ de turbulence homo-
géne s’exprime plus aisément dans le systéme de coordonnées de Lagrange. Mais dans
ce gysteme les équationy de Navier-Stokes sont trés difficiles & utiliser. Done le probléme
théorique peut se définir comme la recherche d’une relation entre les fonctions statis-
tiques du systéme de Lagrange et dn systéme d’Euler. Lanalyse dynamique et I'expé-
rience semblent toutes demx plus simples dang le systéme d’Euler. Notre premier objectit
est de prédéterminer la valeur du carré moyen du déplacement d’une particule.

Dans la premitre conférence, sur «Le caractére mathématique du probléme de
la relation entre les fonctions statistiques Lagrangiennes et Eulériennes s, le Docteur
Lomeey a démoniré que les moyennes prises en un seul point dans chaeun des deux
systémes sont égales I'une 4 Pautre si la densité du fluide est constante. Cest un résultat
que tout le monde a appliqué intuitivement. Je pense qu’il souldve des guestions sérieuses
pour les problémes dans lesquels la densité peut avoir de grandes fluctuations,

Il a traité également de V'établissement d’une relation entre les champs de vitesse
Lagrangien et Eulérien. Une telle relation nexiste qu’an niveau fonctionnel. II a trouvée
paxr l'application de sa nouvelle généralisation du théoréme de Rice et Kac sur la
fréquence d’arrivée des zéros d’une fonction stochastigue. Malheureusement, le nivean
fonetionnel a bien ‘trop de complemte pour s apphquer tout de suite au probléme de la
diffasion.

Dans ma conférence, j'ai rappelé la relation Lagranglenne introduite par Sir

GroFFreY TAYLOR pour exprimer le déplacement en fonction de Iautocorrélation de
vitesse en suivant la particule. Bien que le déplacement soit commandé par les tourbillonss



COMMENTAIRE DE LA SECTION : |
DIFFUSION ET POINT DE VUE DE LAGRANGE

par le Profeszeur 8. CORRSIN
Président

M. le Président, Messieurs, pendant ce Colloque nous avons entendu quati'e Iangues
le bon francais, le manvais francais, le bon anglais, le mauvais anglais. Ce matin, vous
serez exposés 4 en entendre une cinguidéme : Panglais-francais.

Je m’excuse de lire ma conférence, mais antrement vous ne pourriez pas reconna.itre
du tout qu’elle est vraiment une langue.

Je veux remercier les personnes qui ont aidé 3 la traduction, particulidrement
M. Verollet.

La diffusion & partir d’nne source ponetuelle dans un champ de turbulence homo-
geéne g’exprime plus aisément dans le systéme. de coordonnées de Lagrange. Mais dans
ce systeme les équations de Navier-8tokes sont trés difficiles 3 utiliser. Donc le probléme
théorique peut se définir comme la recherche d’une relation entre les fonctions statis-
tigues du systéme de Lagrange et du systdéme d’Euler. L’analyse dynamique et lexpé-
rience semblent toutes deux plus simples dans le systéme d’Euler. Notre premier objectif
est de prédéterminer la valeur du carré moyen du déplacement dune particule.

Dans la premilre conférence, sur «Le caractére mathématigne du probléme de
la relation entre les fonctions statistiques Lagrangiennes et Euléricnnes», le Docteur
LuMiey a démontré que les moyennes prises en un seul point dans chacun des deux
systémes sont égales I'une 4 Vantre si 1a dengité du fluide est constante. (Yest un résultat
que tout le monde 2 appliqué intuitivement, Je pense qu’il souléve des questions sérieuses
pour les problémes dans lesquels la densité peut avoir de grandes fluctuations.

- 11 a traité également de I'établissement d’une relation entre les champs de vitesse
Lagrangien et Eulérien, Une telle relation nexiste qu’au niveau fonctionnel, 11 I’a trouvée
par Dapplication de sa nouvelle généralisation du théoréme de Rick et Kac sur la
fréquence d'arrivée des zéros d’une fonction stochastique. Malheureusement, le nivean
fonctionnel a hien trop de complexité pour s’appliquer tout de suite au probléme de la
diffasion. :

. Dans ma conférence, j’al rappelé la relation Lagrangienne introduite par Sir
Georrrey TavyLok pour exprimer le déplacement en fonction de ’autocorrélation de
vitesse en suivant Ia particule. Bien que le déplacement soit commandé par les tourbilions



82

A basses fréquences, on peut trouver des fonctions associées qui sont commandées par
les hautes frégquences obéissant awx hypothéses de Kormogorov.

Cette théorie est plus directement applicable A Panalyse de 1a diffusion relative de
deux particules, que Opuknrov et BarcHELOR ont discutée. Ils pouvaient de cette fagon
déduire la loi de RicHARDSON,

Récemment Lix a attaqué les problémes de 1a diffusion d'une oun de denx particules
sans utiliser la théorie de Kormogorov. Il urrive aux mémes résultats, mais on ne sait
&1 ses hypothéses sont plus on moing restrictives.

Le Docteur SarFuan a démontré d’une fagon convaincante que sa récente générali-
sation des ouvrages de Tavror et TownsewnD, sur la diffusion simultanée par la turbu-
lence et par Pagitation moléculaire, est correcte quand la durée de la diffusion est assez
courte. I1 a présenté, grice & la théorie du transfert de la chaleur, les mémes résultats
quil a publiés il y a deux ans, obtenus avec une théorie qui tient compte a la fois des
vitesses du fluide et des molécules. T trouve un résultat surprenant : Pinteraction rédnit
la diffusion.. | :

Le Professeur Hinze a passé en revue les cuvrages sur la diffusion dans des écou-
lements turbulents avec teunsion de frottemeni. Deux cas sont relativement simples et
ont été analysés : le premier est la diffusion longitudinale dans un type. (par Tavror
et par Barcmerowr, Binsie et Paiulrs) loin du point d’émission; Vautre cas est la

~

diffusion & partir d’un point dans la turbulence générale lorsque Von fait temdre le

temps vers zéro.

La diffusion a beancoup @’intérét intrinséque. Certaines recherches pourront éire
intéressantes dans ce domaine. Par exemple :
(1) Il faut faire plus d’expériences dans les souftleries & air et & eau, avec une grande
étendue de nombres de Reynolds et de Prandtl.
(2) Sir Grorrrry TaYLOR a suggéré de calenler effet dynamique des contaminants
utilisés dans les expériences, o :
(3) Avec les grandes caleulatrices dig:itales‘électrohiques il sera peut-étre possible
de poursuivre le probléme par la voie théorique. Par exemple, on pourra essayer
~ la méthode « Monte-Carlo » pour intégrer des densités de probabilité fonction-
nelle, '
(4) Les calculatrices pourront aussi étre utiles pour des expériences numériques, par
- exemple pour lés ¢ marches aléatoires » qui ont des caractéristiques 4 la fois
Eulériennes et Lagrangiennes. : : :
(5) Pour les mathématiciens, je suggére d’étudier les fonctions qui dépendent d’elles-
mémes,





